Водный самолет. Пять знаковых отечественных гидросамолетов. Япония зашла дальше всех

ГИДРОСАМОЛЁТ (от гидро … и самолёт ), самолёт, способный взлетать с водной поверхности, садиться на неё, а также маневрировать на воде; базируется на гидроаэродроме . Г. должен обладать плавучестью, остойчивостью, непотопляемостью, устойчивостью движения по воде и др. мореходными качествами, определяющими возможность его эксплуатации в акваториях при различных гидрометеорологических условиях. При нахождении на плаву вес Г . полностью компенсируется гидростатической подъёмной силой. В процессе разбега гидродинамическая подъёмная сила глиссирующей поверхности днища корпуса и аэродинамическая подъёмная сила крыла при достижении взлётной скорости обеспечивают отрыв Г . от водной поверхности. Профилированные обводы днища корпуса Г . повышают устойчивость хода, обусловливают достижение минимальных перегрузки и брызгообразования (при разбеге и пробеге гидросамолёта). Наличие на днище корпуса Г . поперечного уступа (редана) способствует отрыву Г . от водной поверхности на предвзлётных скоростях. Г . обычно строятся по схеме моноплана с высокорасположенными двигателями во избежание их заливания и забрызгивания.

Используя Г ., можно решать многие актуальные ныне задачи с эффективностью, практически недоступной сухопутным самолётам, среди них: осуществление противолодочной обороны, патрулирование двухсотмильной экономической зоны с дежурством на плаву, а также проведение аварийно-спасательных операций в кратчайшие сроки и на больших удалениях от берега; экологический контроль акваторий с забором проб воды и донных отложений на плаву; тушение лесных пожаров с забором воды на близлежащих водоёмах в режиме глиссирования; защита водных поверхностей от загрязнения разлившейся нефтью с оперативной локализацией разлива; освоение и обслуживание территорий с неразвитой сетью наземных автомобильных и железнодорожных магистралей со взлётом и посадкой в любом месте, где есть достаточное водное пространство (которое к тому же не нужно специально строить и поддерживать в рабочем состоянии). Большие транспортные возможности гидроавиации объясняются ещё и тем, что 3 / 4 поверхности земного шара покрыты водой. Это обстоятельство обеспечивает предпосылки развития и эффективного использования гидроавиации в прибрежной зоне морей и океанов, в акваториях озёр, водохранилищ и крупных рек.

В зависимости от конструктивного исполнения различают следующие типы Г . : летающая лодка – самолёт, нижняя часть фюзеляжа которого выполнена в виде лодки, приспособленной для быстрого перемещения по поверхности воды; поплавковый гидросамолёт – обычный или специально построенный самолёт, на котором закреплены один, два поплавка или более для стоянки и передвижения по поверхности воды. Развитие гидроавиации началось с постановки сухопутного самолёта на поплавки. Первые поплавковые Г . (рис. 1) имели два основных поплавка 1 и дополнительный (вспомогательный) поплавок 2 в хвостовой или носовой части.

В зависимости от того, каким способом обеспечивается базирование и эксплуатация самолёта с поверхности акваторий – гидроаэродромов , можно провести классификацию гидросамолётов (рис. 2).

Поплавковые схемы нередко применяют при переделке лёгких сухопутных самолётов в гидросамолёт. Г . с взлётно-посадочным устройством в виде сочетания колёсного шасси и лодки или поплавков называют амфибиями . Они могут базироваться также на сухопутных аэродромах. Самолёт-амфибия (в переводе с греч. языка « ведущий двойной образ жизни » ) приспособлен для взлёта с земли и воды и посадки на них.

Особую разновидность Г. представляют самолёты лодочного типа, снабжённые дополнительными устройствами для взлёта и посадки в виде гидролыж и подводных крыльев, убирающихся в полёте. Поиск новых проектных решений Г. позволил реализовать и другие технические решения, не получившие пока дальнейшего развития: Г. на подводных крыльях (например, Бе-8); глиссирующий реактивный истребитель (например, Convair F2Y Sea Dart); глиссирующий реактивный бомбардировщик (Martin P6M SeaMaster и др.).

Историческая справка

Впервые успешный полёт на Г. собственной конструкции совершил французский инженер А. Фабр в 1910. Развитие гидроавиации началось с постановки сухопутного самолёта на поплавки. В России первый Г. поплавкового типа создан в 1911 Я. М. Гаккелем ; отмечен на Международной авиационной выставке в 1911 большой серебряной медалью. У истоков отечественного воздухоплавания и авиации стояли офицеры ВМФ России. Первыми в мире они разработали тактику морской авиации, осуществили с воздуха бомбардировку вражеского корабля, создали проект авианосца, первыми пролетели в небе Арктики. Географические и стратегические особенности театров военных действий того времени, протяжённые морские границы на Балтийском и Чёрном морях, отсутствие специально оборудованных аэродромов для эксплуатации сухопутных самолётов и в то же время обилие крупных рек, озёр, свободных морских пространств обусловили потребность в организации морского самолётостроения в нашей стране. Первые летающие лодки в России (М-1, М-4, М-9) построены в 1913–15 под руководством Д. П. Григоровича . М-1 (Морской первый) – это первый Г. специальной конструкции, который он создал. Именно появление этой летающей лодки стало толчком для выделения гидропланов в отдельный вид авиатехники. Уже в 1-ю мировую войну Россия использовала гидроавианосец «Орлица» с эскадрильей летающих лодок М-5 и М-9. В 1915 Григорович спроектировал разведывательный самолёт – летающую лодку М-9, приспособленную для спуска и подъёма на корабль. Самолёт был оснащён двигателем в 150 л. с. (ок. 111 кВт), способным разгонять машину до 110 км/ч.

В советский период над созданием Г. для авиации ВМФ и гражданской авиации работали А. Н. Туполев , Г. М. Бериев , В. Б. Шавров, И. В. Четвериков, Р. Л. Бартини , А. К. Константинов и др. авиаконструкторы. Широко распространённые Г. (в первую очередь крупные летающие лодки) на регулярных дальних линиях в 1930 – 40-х гг. были вытеснены с этих маршрутов самолётами наземного базирования – сначала винтовыми, а затем и реактивными.

Важным этапом в развитии отечественной гидроавиации стало организованное в Таганроге Центральное КБ (ЦКБ) морского самолётостроения под руководством Г. М. Бериева (с 1989 Таганрогский авиационный научно-технический комплекс – ТАНТК им. Г. М. Бериева). Созданные в предвоенные годы морской ближний разведчик МБР-2, корабельные катапультные гидросамолёты КОР-1 (Бе-2, первый полёт в 1936) и КОР-2 (Бе-4, первый полёт в 1940) находились на вооружении ВМФ и успешно применялись в Великой Отечественной войне. Многоцелевой гидросамолёт Бе-6 типа «летающая лодка» (первый полёт в 1949) с поршневым двигателем был разработан для разведки, патрулирования, бомбардировки и транспортировки грузов. Бе-6 мог оснащаться оборудованием, позволяющим ему совершать узкоспециализированные задачи: спасательные операции, фотосъёмку и др. Работы по созданию реактивного Г. с турбореактивными двигателями начались в 1947 в ЦКБ Бериева. В 1952 первый полёт совершила экспериментальная реактивная летающая лодка Р-1 (морской разведчик). Противолодочный самолёт-амфибия (летающая лодка) Бе-12, созданный на базе Бе-6, впервые поднялся в воздух в октябре 1960, а с 1965 поступил на вооружение авиации советского ВМФ и состоит на вооружении с модификациями по сей день. За всё время эксплуатации Бе-12 установил 46 мировых рекордов; он оснащён двумя авиационными турбовинтовыми двигателями по 5180 л.с. каждый (ок. 3833 кВт), развивает скорость до 550 км/ч и способен нести до 3 т боевой нагрузки на борту. Менее успешной была судьба самолёта-амфибии вертикального взлёта и посадки ВВА-14 (первый полёт в 1972) Р. Л. Бартини, который не был принят в эксплуатацию. С развитием реактивной авиации Г. были вытеснены в связи с более низкими экономическими показателями и ограничениями по скорости. Однако развитие авиационных технологий позволило конструкторам ТАНТК создать удачный реактивныйГ. А-40 «Альбатрос» (Бе-42). Первый полёт с суши А-40 совершил в декабре 1986, а в ноябре 1987 первый раз поднялся с воды. Проект был остановлен после распада СССР и вновь открыт в 2016. Планируется, что к 2020 гидропланы А-40 (Бе-42) заменят находящиеся на вооружении флота противолодочные самолёты Бе-12. Решение о начале работ по созданию самолёта-амфибии (летающая лодка) Бе-200 было принято в 1992 (первый полёт в 1998, начало эксплуатации с 2003). По состоянию на 2016, Бе-200 являлся самым большим реактивным многоцелевым самолётом-амфибией в мире (рис. 3). На нём установлено 148 мировых рекордов. Бе-200 разработали на основе и с использованием идей и конструктивно-компоновочных решений, которые были заложены в его предшественнике – А-40. Многоцелевая машина способна взлетать как с земли, так и с водной поверхности. Основные сферы применения: проведение спасательных операций, охрана водных поверхностей, экологические миссии, тушение пожаров, перевозки пассажиров и грузов. По ряду лётно-технических характеристик самолёт не имеет аналогов в мире:

Экипаж 2 человека
Пассажировместимость до 64 пассажиров
Длина 32,05 м
Размах крыла 32,78 м
Высота 8,90 м
Площадь крыла 117,44 м 2
Масса без груза 28 000 кг
Масса полезной нагрузки 8000 кг груза, а также 12 м³ воды в баках (8 секций водяных баков, с возможностью одновременного или последовательного сброса)

Максимальная взлётная масса

с воды 40 000 кг
с суши 42 000 кг
Силовая установка турбовентиляторный двигатель (турбореактивный двухконтурный двигатель) 2×ТРДД Д-436ТП с тягой на взлётном режиме (2×7500 кгс)
Максимальная скорость 700 км/ч на высоте 7000 м
Крейсерская скорость 550–610 км/ч
Скорость при взлёте 220 км/ч
Скорость при посадке 195 км/ч
Скорость при наборе воды 100–120 км/ч
Практическая дальность 3100 км
Практический потолок 8000 м
Скороподъёмность 8 м/с

Наличие в России протяжённой морской границы и большого числа внутренних водоёмов побудило конструкторов ТАНТК создать небольшой самолёт-амфибию, который может эффективно заполнить нишу между сухопутными самолётами и вертолётами при перевозке пассажиров и грузов в регионах, где недостаточно развита сеть обычных аэродромов. Разработка самолёта-амфибии Бе-103 стала производиться в нач. 1990-х гг. Первый полёт совершён в 1997, начало эксплуатации в 2003. В 2001 Бе-103 получил сертификат лётной годности по АП-23 (Россия) и FAR-23 (США), а также по нормам лётной годности Бразилии и Китая.

Основные технические и мореходные характеристики гидросамолёта

Управление полётом Г. производится аэродинамическими (воздушные рули, закрылки, несущие поверхности изменяемой геометрии и др.) или газодинамическими (изменение вектора тяги двигателя) органами управления. Классификация Г. в полёте производится по конструктивным признакам (в т. ч. по числу несущих поверхностей, аэродинамической схеме, силовой установке), лётно-техническим характеристикам, системе бортового оборудования, назначению (гражданские и военные) и др. и аналогична классификации самолёта .

Рост размеров и масс Г. и, как следствие, рост размеров поплавков позволил размещать в них экипаж и оборудование, что привело к созданию Г. типа «летающая лодка» однолодочной схемы и двухлодочной схемы – катамаран .

Интегральная схема наиболее целесообразна для тяжёлых многоцелевых океанских гидросамолётов. Частично погружённое в воду крыло позволяет уменьшить размеры лодки и повысить аэрогидродинамическое совершенство Г. (определяется мéньшим лобовым сопротивлением). Таким образом, технические решения, обеспечивающие базирование и эксплуатацию самолёта с водной поверхности, фактически определяют облик (аэродинамическую схему) Г.

Мореходные качества (мореходность) Г. характеризуют возможность его эксплуатации в акваториях с определёнными гидрометеорологическими условиями – скоростью и направлением ветра, направлением и скоростью движения, формой, высотой и длиной волн воды (см. также Мореходные качества судна ). Мореходность Г. оценивается предельным волнением акватории, при котором возможна безопасная эксплуатация. Мореходные качества Г. включают в себя такие характеристики, как плавучесть, остойчивость, управляемость, непотопляемость и т. п. Эти качества определяются формой и размерами находящейся под водой водоизмещающей части (лодки или поплавка) Г., распределением масс Г. по длине и высоте. В дальнейшем при рассмотрении мореходных характеристик Г., если их без особой оговорки в равной мере можно отнести к лодке и поплавку, будем использовать термин «лодка».

Плавучесть – способность Г. плавать в заданном положении относительно водной поверхности. Г., как и любое другое плавающее тело, например судно, поддерживается на плаву архимедовой силой:$$P=W\rho_{в}g=G,\tag{1}$$ где: $W$ – объём воды, вытесняемой лодкой, – объёмное водоизмещение лодки (м 3); $\rho_в$ – плотность воды, вытесняемой лодкой (кг/м 3); $g$ – ускорение свободного падения (м/с 2); произведение $W\rho_в$ – масса воды, вытесняемая лодкой, – массовое водоизмещение лодки (кг); $G$ – сила тяжести Г. (Н).

Остойчивость (аналог термина «устойчивость» в морской терминологии) при плавании – способность Г., отклонённого внешними возмущающими силами от положения равновесия, возвращаться в исходное положение после прекращения действия возмущающих сил. Очевидно, что при плавании частично или вполне (полностью) погружённого в воду тела нет никаких других сил для возвращения его в положение равновесия, кроме силы тяжести $G$ и равной ей силы поддержания $P$ . Следовательно, только взаимное положение этих сил определит остойчивость или неостойчивость плавающего тела.

Остойчивость Г. (как и остойчивость судна) принято определять взаимным положением центра масс и метацентра – центра кривизны линии, по которой смещается центр величины водоизмещающего тела при выведении его из равновесия. Различают поперечную и продольную остойчивость Г. (при наклонении самолёта соответственно в поперечной и продольной плоскостях.

Для обеспечения поперечной остойчивости центр масс должен находиться ниже самого низкого положения метацентра. Большинство современных Г. выполнено по классической аэродинамической схеме с фюзеляжем – лодкой (которой придаются соответствующие формы для выполнения взлёта с воды и посадки на воду), высокорасположенным крылом с установленными на нём или на лодке двигателями для максимального удаления их от водной поверхности с целью исключить при движении по воде заливание крыла водой и попадание её в двигатели и на винты самолётов с винтомоторной силовой установкой, поэтому в большинстве случаев центр масс самолёта выше метацентра и однолодочный Г. в поперечном отношении неостойчив.

Проблемы поперечной остойчивости Г. однопоплавковой или однолодочной схемы могут быть решены применением подкрыльных поплавков. Подкрыльный поплавок устанавливают на пилоне по возможности ближе к концу крыла. Опорные (поддерживающие ) подкрыльные поплавки не касаются воды при движении Г. по ровной воде и обеспечивают остойчивое его положение с углами крена 2–3° при стоянке, несущие подкрыльные поплавки частично погружены в воду и обеспечивают стоянку без крена. Водоизмещение поплавка выбирается таким образом, чтобы под воздействием ветра с определённой скоростью $V_в$ Г., находящийся на скате волны, накренился на определенный угол $\gamma$ .

Продольная остойчивость определяется такими же условиями, как и поперечная. Обеспечить продольную остойчивости Г. проще, чем поперечную, в том смысле, что сильно развитая в длину лодка почти всегда обладает естественной продольной остойчивостью ($H_0\gt 0$ ). Пикирующий момент от силы тяги двигателя, линия действия которой обычно проходит выше центра масс самолёта, заглубляет носовую часть лодки, уменьшает угол начального дифферента, т. е. заставляет лодку принять некоторый дифферент на нос, что определит новую грузовую ватерлинию, которая называется упорной.

Гидростатические силы (силы поддержания), обеспечивающие плавучесть и остойчивость лодки в состоянии покоя, естественно, в большей или меньшей мере проявляются и в процессе движения по воде. Весьма важная характеристика Г., определяющая его мореходность, – способность преодолевать сопротивление воды и развивать необходимую скорость движения по воде при минимальных затратах мощности. Гидродинамическая сила сопротивления воды движению лодки в режиме плавания определяется трением воды в пограничном слое (сопротивление трения) и распределением гидродинамического давления потока воды на лодку (сопротивление формы, связанное с образованием вихревых течений; его иногда называют водоворотным сопротивлением) и зависит от скорости движения (скоростного напора $\rho_вV^2/2$ ), формы и состояния поверхности лодки.

Волновое сопротивление – часть гидродинамического сопротивления, характеризующая затрату энергии на образование волн. Волновое сопротивление в воде (тяжёлой жидкости) возникает при движении погружённого или полупогружённого тела (поплавка, лодки) вблизи свободной поверхности жидкости (т. е. границы воды и воздуха). Движущееся тело оказывает добавочное давление на свободную поверхность жидкости, которая под влиянием собственной силы тяжести будет стремиться вернуться к исходному положению и придёт в колебательное (волновое) движение. Носовая и кормовая части лодки образуют взаимодействующие между собой системы волн, оказывающие существенное влияние на сопротивление. В режиме плавания равнодействующая сил гидродинамического сопротивления практически горизонтальна. Форма водоизмещающей части Г. (как и форма судна) должна обеспечить способность движения по воде с минимальным сопротивлением и, как следствие, с минимальными затратами мощности (ходкость судна, по морской терминологии). При проектировании гидросамолётов (как и судов) для выбора форм и оценки гидродинамических характеристик используются результаты испытаний путём буксировки («протаски») динамически подобных моделей в опытовых бассейнах (гидроканалах) или в открытых акваториях. Однако, в отличие от судна, комплекс характеристик мореходности Г. значительно шире, основной из них является способность производить безопасные взлёты и посадки на взволнованной поверхности с определённой высотой волны, при этом скорости хода по воде Г. во много раз превышают скорости морских судов. Благодаря особой форме днища лодки Г. возникают гидродинамические силы, поднимающие носовую часть и вызывающие общее значительное всплытие лодки. Следовательно, движение Г., в отличие от судна, происходит при переменном водоизмещении и угле дифферента лодки (фактически угле набегания водяного потока на днище, аналогичном углу атаки крыла). На скоростях движения по воде, близких к скорости отрыва при взлёте, водоизмещение практически равно нулю – Г. идёт в режиме глиссирования (от франц. glisser – скользить) – скольжения по поверхности воды. Характерная особенность режима глиссирования заключается в том, что равнодействующая сил гидродинамического сопротивления воды имеет настолько большую вертикальную составляющую (гидродинамическую силу поддержания), что лодка большей частью своего водоизмещающего объёма выходит из воды и скользит по её поверхности. Поэтому обводы (очертания наружной поверхности) лодки гидросамолёта (рис.4) существенно отличаются от обводов судна.

Основное отличие лодки Г. состоит в том, что днище (нижняя поверхность лодки, которая является основной опорной поверхностью при движении Г. по воде) имеет один или несколько реданов (франц. redan – уступ), первый из которых, как правило, располагается вблизи центра масс Г., а второй – в кормовой части. Прямые в плане реданы (рис. 4, а ) создают в полёте значительно бόльшее сопротивление, чем заострённые реданы (рис. 4, б ), гидродинамическое сопротивление и брызгообразование которых существенно меньше. Со временем ширина второго редана постепенно уменьшалась, межреданная часть днища стала сходиться в одной точке (рис. 4, в ) на корме лодки.

В процессе развития гидроавиации изменялась и форма поперечного сечения лодки (рис. 5). Лодки с плоским днищем (рис. 5, а ) и с продольными реданами (рис. 5, б ), слабокилеватые (т. е. с небольшим наклоном участков днища от центральной килевой линии к бортам – рис. 5, в ) и с вогнутым днищем (рис. 5, г ) постепенно уступали место килеватым лодкам с плоскокилеватым днищем (рис. 5, д ) или с более сложным (в частности, криволинейным) профилем килеватости (рис. 5, е ). Поскольку вода – практически несжимаемая жидкость, то сила удара о воду соизмерима с силой удара о землю. Основное назначение килеватости – заменить собой амортизатор и при постепенном погружении в воду клиновой (килеватой) поверхности при посадке смягчить посадочный удар, а также удары воды о днище лодки при движении на взволнованной поверхности воды.

Характерные обводы лодки современного Г. представлены на рис. 6. Лодка имеет поперечную и продольную килеватость днища.

Поперечная килеватость лодки (или угол, образуемый килем и скулами) выбирается исходя из условий обеспечения приемлемых перегрузок на взлётно-посадочных режимах и обеспечения динамической путевой остойчивости. Угол поперечной килеватости носовой части лодки начиная от первого редана b р н плавно увеличивается к носу лодки (на виде спереди А–А – наложенные сечения по носовой части лодки) таким образом, что формируется волнорез в носовой части лодки, «разваливающий» встречную волну и уменьшающий волно- и брызгообразование. Скула (линия пересечения днища и борта лодки) препятствует прилипанию воды к бортам. Для создания приемлемого волно- и брызгообразования применяют выгиб носовых скул, т. е. профилировку днища носовой части лодки по сложным криволинейным поверхностям. Днище межреданной части лодки (на виде сзади Б–Б – наложенные сечения по кормовой части лодки) обычно плоскокилеватое – значение угла $\beta_{р\,m}$ постоянно. Углы поперечной килеватости на редане, как правило, порядка 15–30°. Продольная килеватость лодки $γ_л=γ_h+γ_m$ определяется углом продольной килеватости носовой части $γ_h$ и углом продольной килеватости межреданной части $γ_m$ . Длина, форма и продольная килеватость носовой части ($γ_h \cong 0\div 3°$ ), влияющие на продольную остойчивость и угол начального дифферента, выбираются такими, чтобы исключить зарывание носом и заливание палубы водой при высоких скоростях хода. Продольная килеватость межреданной части ($γ_m\cong6\div9°$ ) выбирается такой, при которой обеспечивается устойчивое глиссирование, посадка на сушу при максимально допустимом угле атаки и сход на воду (для самолёта-амфибии) по существующим слипам (англ. slip, букв. – скольжение) – уходящим в воду наклонным береговым площадкам для схода амфибии на воду и выхода на берег. При достаточной продольной килеватости межреданной части отрыв при взлёте с воды может происходить «с подрывом» (увеличением угла атаки) на максимально допустимом коэффициенте подъёмной силы. Отрыв с воды при взлёте осложнён тем, что кроме сил сопротивления воды движению лодки, рассмотренных выше, между днищем лодки и водой действуют силы сцепления (подсасывания), особенно в задней части лодки. Назначение редана – уничтожить подсасывающее действие воды (подсос) при разбеге, уменьшить этим сопротивление воды, дать возможность лодке «отлипнуть» от воды. Редан, нарушая плавность обводов лодки, естественно, способствует вихреобразованию; при увеличении скорости хода по воде интенсивность вихреобразования возрастает, начинается срыв водяных струй с редана и, как следствие, кавитация (от лат. cavitas – пустота) – нарушение сплошности внутри жидкости с образованием полостей, заполненных воздухом (кавитационных пузырьков). Эта воздушная прослойка способствует отрыву воды от зареданного участка днища, что приводит к общему значительному всплытию лодки, – начинается режим глиссирования (гидропланирования), или режим бега на редане, наиболее выгодный по величине гидродинамического сопротивления. Перед выходом на режим глиссирования за счёт взаимодействия носовой и кормовой волн, создаваемых лодкой на поверхности воды, происходит увеличение дифферента на корму, изменяется картина обтекания, днище начинает испытывать большие давления, увеличивается и отклоняется от начального горизонтального положения равнодействующая сил гидродинамического сопротивления; появляется вертикальная составляющая (гидродина­мическая сила поддержания), которая выталкивает лодку из воды, что уменьшает смоченную поверхность днища и бортов. Таким образом, Г. при взлёте должен выходить на редан, сохранять достаточную продольную остойчивость при глиссировании и легко отрываться от воды.

В режиме глиссирования (рис. 7) Г. движется на относительно малой контактной (смоченной) поверхности 1 с водой на треугольнике в зоне первого редана, резко уменьшается горизонтальная составляющая $X_{гид}$ равнодействующей сил гидродинамического сопротивления $R_{гид}$ и возрастает скорость хода. Второй редан (корма лодки) улучшает продольную остойчивость при беге на первом редане. Сила тяжести самолёта $G$ уравновешивается частично гидродинамической силой поддержания $P_{гид}$ контактной поверхности днища, а частично подъёмной силой самолёта $Y_{cam}=Y_{кр}–Y_{г.о.}$

Сила тяги двигателей $P_{дв}$ больше суммы сил аэродинамического $X$ и гидродинамического $X_{гид}$ сопротивления – Г. в режиме глиссирования движется с ускорением, увеличивая скорость движения до скорости отрыва.

Характер изменения основных параметров движения Г. при взлёте в зависимости от относительной скорости разбега $\overline V= V/V_{отр}$ (здесь $V_{отр}$ – скорость отрыва Г. от воды) определяется режимами плавания, переходным режимом, режимом глиссирования, при посадке. В режиме плавания при скоростях $V\cong (0\div 0,25)V_{отр}$ сила тяжести Г. практически полностью уравновешивается силой гидростатического поддержания, значение аэродинамической подъёмной силы в общем балансе сил невелико. Сила гидродинамического сопротивления определяется в основном сопротивлением поверхностного трения $X_т$ и волнообразования $X_в$ (за счёт резких уступов на водоизмещающей части лодки – скул и редана). Примерно в середине режима начинает увеличиваться угол дифферента $\phi$ , появляется срыв струй воды с редана, возникает весьма незначительная гидродинамическая сила поддержания и соответствующая ей сила сопротивления глиссирования $X_{гл}$ . В переходном режиме при скоростях $V\cong(0\div 0,25)V_{отр}$ интенсивно растёт угол дифферента, сила гидростатического поддержания и соответствующая ей сила сопротивления глиссирования $X_{гл}$ . Лодка резко всплывает, борта выходят из воды, соответственно уменьшается сопротивление поверхностного трения $X_т$ и волнообразования $X_в$ , тем не менее в этом режиме сила гидродинамического сопротивления $X_{гид}$ достигает максимального значения («горб» на кривой гидродинамического сопротивления). Значение аэродинамических сил в общем балансе сил относительно невелико. В режиме глиссирования при скоростях $V\cong(0,50\div1,00)V_{отр}$ угол дифферента постепенно уменьшается, соответственно уменьшается сила гидростатического поддержания и сила сопротивления глиссирования, поскольку с ростом скорости движения на редане возрастает аэродинамическая подъёмная сила, полностью уравновешивающая силу тяжести Г. на скорости отрыва. Отметим ещё раз, что для обеспечения взлёта гидросамолёта сила тяги двигателей должна быть больше максимального значения суммы сил аэродинамического и гидродинамического сопротивления (в зоне «горба» на кривой гидродинамического сопротивления). Значения гидродинамического сопротивления при пробеге будут отличаться от значений при посадке вследствие того, что нагрузка на воду будет меньше (посадка совершается самолётом с массой меньшей, чем взлётная) и практически отсутствует при изменении угла дифферента вертикальная составляющая силы тяги двигателей, поскольку пробег совершается с двигателями, работающими в режиме «малого газа», т. е. при незначительной силе тяги.

Гидродинамическое совершенство Г. характеризуется минимальным значением гидродинамического качества : $K = A/X_{гид}$ , где $A$ – нагрузка на воду, или сила тяжести Г., передающаяся на воду при определённой скорости, равная разности между полной силой тяжести и подъёмной силой самолёта в данный момент ($A=G–Y_{cam}$ ); $X_{гид}$ – гидродинамическое сопротивление самолёта в данный момент. Значение $K_{min}$ составляет 4,5–6,0 для лодок и 3,5–4,5 для поплавков. Безопасность при взлёте и посадке обеспечивается, если: Г. не зарывается носом при движении, особенно по взволнованной поверхности; плавно выходит на глиссирование; обладает остойчивостью и устойчивостью по всем трём осям в режиме плавания и глиссирования, т. е. не имеет тенденции к самопроизвольной продольной раскачке с возрастающей амплитудой, к самопроизвольному рысканию и крену. Режим глиссирования является наиболее сложным с точки зрения продольной устойчивости движения. При глиссировании межреданная часть днища заливается брызговой струёй от первого редана. Пульсации давления в струе могут вызвать самопроизвольные угловые и вертикальные колебания лодки даже при совершенно гладкой поверхности воды. Устойчивое глиссирование возможно при определённых сочетаниях угла дифферента и скорости движения для заданной формы поверхности глиссирования. Устойчивость глиссирования обеспечивается выбором рациональных обводов лодки и отрабатывается на динамически подобных моделях. Кроме того, Г. должен соответствовать весьма специфическим требованиям к устойчивости: устойчиво двигаться на буксире в ветреную погоду и разворачиваться носом против ветра («приводиться к ветру») при дрейфе (от голл. drijven – плавать, гнать) – смещении с заданного курса при неработающем двигателе под воздействием ветра и волн. Г. должен обладать управляемостью – способностью выполнять развороты на плаву при наличии ветра. Управляемость Г. по курсу в режиме плавания обычно обеспечивается водяным рулём (водорулём, гидрорулём), устанавливаемым, как правило, в корме лодки (второй редан), или с помощью разнотяговости двигателей (для двухдвигательного самолёта) – разного изменения тяги двигателей правого и левого борта. В режиме глиссирования уже возможно управлять Г. по курсу и углу дифферента с помощью аэродинамических рулей. Приемлемое брызгообразование (чистота бега), при котором можно защитить от попадания воды воздухозаборники двигателей, воздушные винты, закрылки и другие жизненно важные агрегаты, – одна из важнейших характеристик, определяющих мореходность гидросамолёта. Как уже отмечалось, движущаяся лодка оказывает добавочное давление на свободную поверхность воды. Пиковое (ударное) давление в области контакта передних точек лодки с водой выбивает с поверхности капли воды, разлетающиеся от удара в виде брызговых струй. Интенсивное брызгообразование может происходить уже на малых скоростях хода, особенно на взволнованной поверхности воды. Форма поперечного сечения лодки существенно влияет на характер брызгообразования. При плоскокилеватом днище брызговые струи поднимаются на большую высоту; днища с более сложным (в частности, криволинейным) профилем килеватости также не всегда позволяют уменьшить брызгообразование; эффективным средством его уменьшения являются брызгоотражатели – брызгоотражающие щитки, установленные в плоскости борта. В режиме глиссирования от передней линии контактной площадки разворачиваются брызговые струи сложной пространственной формы. Относительно слабые прямолинейные струи («ленточные», или скоростные, струи) стелются под малым углом к поверхности воды. Мощные и тяжёлые купольные, или блистерные (от англ. blister – пузырь), струи выбрасываются вверх и назад. Высоту подъёма этих струй определяют положение крыла, двигателей и оперения гидросамолёта. Непотопляемость как одна из характеристик мореходности означает, что Г. сохраняет плавучесть и остойчивость при частичном повреждении и затоплении подводной части лодки или поплавков. Для того чтобы обеспечить соответствующий запас плавучести при повреждениях, объём водонепроницаемой части лодки (поплавка) делают в 1,2–3,5 раза больше, чем объём, соответствующий взлётной массе гидросамолёта. Подводную часть лодки разделяют водонепроницаемыми (герметичными) перегородками на отсеки таким образом, чтобы даже затопление двух соседних отсеков не приводило к потере продольной остойчивости или к появлению недопустимых углов дифферента и крена, затрудняющих буксировку аварийного Г., и тем более к затоплению лодки. Чтобы повреждение или отрыв подкрыльного поплавка не привели к потере поперечной остойчивости и опрокидыванию Г., концевые части крыла выполняют в виде водонепроницаемых (водоизмещающих) отсеков.

Таким образом, обеспечение мореходности влияет на аэродинамическую компоновку, точнее, на аэрогидродинамическую компоновку, – настолько сильно требования мореходности сказываются на выборе формы, размеров и взаимного расположения основных агрегатов гидросамолёта.

Основные тенденции развития гидроавиации

В процессе развития гидроавиации только в нашей стране было создано ок. 100 летательных аппаратов, способных использовать в качестве аэродрома водную поверхность. Естественно, практически невозможно удовлетворить все требования мореходности, не проигрывая при этом в аэродинамических и лётных характеристиках, поэтому принимаются компромиссные решения вопросов аэродинамики и мореходности. Перечисленные выше некоторые аспекты обеспечения мореходности увеличивают сложность и количество проблем, решаемых проектировщиками при создании гидросамолёта.

По состоянию на 2016 мировой парк самолётов-амфибий насчитывает порядка 2000 единиц. При этом бóльшую его часть составляют лёгкие самолёты со взлётной массой до 2,5 т – преимущественно модификации различных сухопутных машин. Доля тяжёлых амфибий невелика. Помимо отечественных Бе-200, они представлены канадскими самолётами-амфибиями CL-215 и CL-415, японскими US-1A и US-1A (US-2), а также китайскими гидросамолётами SH-5.

CL-215 представляет собой двухмоторный поршневой самолёт, предназначенный для работы на низкой скорости при тушении лесных пожаров. Самолёт может взлетать с коротких, грунтовых взлётно-посадочных полос. Кроме основного противопожарного CL-215A, используется также поисково-спасательный вариант CL-215B (для применения этого самолёта в качестве транспортного, санитарного, пассажирского). Первый полёт CL-215 с обычной взлётно-посадочной полосы состоялся 23.10.1967, а с воды он впервые взлетел 2.5.1968. CL-415 (Бомбардье 415, англ. Bombardier 415) турбовинтовой (двигатель Pratt & Whitney Canada PW123AF мощностью по 2380 л.с.) двухмоторный противопожарный самолёт-амфибия, разработанный компанией «Canadair» (первый полёт совершил 6.12.1993). В конструкции лопастей применены композиционные материалы. Производится канадской компанией « Bombardier » . Может быть использован для выполнения поисково-спасательных операций, доставки групп спасателей и специального оборудования в районы бедствия. Самолёт способен взлетать как с земли, так и с водной поверхности. Бомбардье́ 415 успешно используются в странах, где леса расположены на холмах близ морского побережья или крупных водоёмов. Помимо баков для воды на самолёте установлены баки для концентрированной противопожарной пены, а также система смешивания воды и пены. Противопожарный самолёт может быть переоборудован в транспортный. Даже в противопожарном варианте Бомбардье 415 способен перевозить до 8 пассажиров, а после переоборудования его пассажировместимость может возрасти до 30 чел. Наиболее многочисленными из находящихся сегодня в эксплуатации крупных Г. являются канадские амфибии семейства CL-215/ CL-415. На протяжении 40 лет было построено почти 200 таких машин. На основе пожарного самолёта компанией « Bombardier » разработан многоцелевой самолёт-амфибия модели 415MP, предназначенный для использования в качестве поисково-спасательного и патрульного.

Самолёт-амфибия ShinMaywa US-2 Морских сил самообороны Японии – большая противолодочная четырёхдвигательная турбовинтовая летающая лодка. Построен на базе US-1 Kai (первый полёт в апреле 2004). US-2 является единственным в мире Г., способным совершать взлёт и посадку при волнении моря в 5 баллов, при взлётной дистанции – 280 метров.

Китайский многоцелевой самолёт-амфибия Harbin SH-5 создан для замены советского гидросамолёта Бе-6. Оснащён четырьмя турбовинтовыми двигателями мощностью по 3150 л.с. (ок. 2330 кВт) каждый. Экипаж состоит из 8 чел. В передней части лодки расположены 3 грузовых отсека. Среднюю часть занимает помещение для операторов поискового оборудования, за которым расположены отсеки радиосвязной, поисковой и прочей электронной аппаратуры. Все отсеки соединяются сквозным коридором с водонепроницаемыми дверями в переборках между помещениями. Предназначен для патрульных и поисковых операций в открытом море, поиска подводных лодок, постановки минных заграждений, радиотехнической и фоторазведки, грузоперевозок и десантирования (первый полёт в 1976, поступил на вооружение в 1986).

История самолётов, 1919–1945 Соболев Дмитрий Алексеевич

«Летающие лодки»

«Летающие лодки»

Гидроавиация играла важную роль в годы первой мировой войны. Гидросамолеты использовали для охраны побережья, морской разведки, борьбы с подводными лодками и военными кораблями. В ходе военных действий получили преимущественное распространение «летающие лодки», обладающие лучшей мореходностью. К концу войны в США и Англии были созданы тяжелые многомоторные «летающие лодки» с большой дальностью полета .

После окончания войны в гидроавиации, как и во всем самолетостроении, началось стремительное свертывание производства. Например, в США в ноябре 1918 г. имелось 1172 «летающих лодок», а в середине 1925 г. - только 117 . Новая война казалась невозможной и охранять берега и морские просторы было не от кого.

Новой предпосылкой для развития «летающих лодок» стада гражданская авиация. Гидросамолет имел два существенных преимущества перед обычным пассажирским самолетом. Во-первых, он мог садиться на воду и взлетать с воды. Это делаю возможным использовать «летаюшие лодки» в отдаленных районах Земли, где отсутствовал и аэродромы, но имелись водные акватории. Таким образом, гидроавиация могла сыграть важную роль в развитии авиалиний в Азии, Африке, Южной Америке, Океании и в географических исследованиях.

Во-вторых, полеты на гидросамолете над морем были безопаснее, чем на обычном самолете. При отсутствии сильного волнения на воде пилот гидросамолета мог в любой момент и без большого риска приводнить машину, тогда как успех вынужденной посадки самолета с колесным шасси сильно зависел от рельефа местности. Кроме того, «летаюшая лодка» после вынужденной посадки могла своим ходом добраться по воде до места назначения; известны случаи, когда приводнившийся самолет проплывал до берега по воде многие десятки километров . Если учесть, что вынужденные посадки из-за неполадок в двигателе в 20-е годы были довольно частым явлением, указанное достоинство гидросамолета становится особенно весомым.

Потенциальные возможности «летающих лодок» как воздушного транспорта продемонстрировал целый ряд выдающихся перелетов. В мае 1919 г. на трех американских четырехмоторных «летающих лодках» Кертисс NC-4 стартовал первый в истории авиации трансатлантический перелет с острова Ньюфаундленд (Канада) в Плимут (Англия). Правда, долететь до берегов Англии удалось экипажу только одного самолета под командованием А. Рида. Весь маршрут протяженностью 6315 км был пройден за 12 дней, с промежуточными посадками на Азорских островах, в Португалии, и Испании. Экипажи двух других самолетов, совершивших вынужденную посадку в Атлантическом океане, были подобраны проходящими судами.

В 1924 г. несколько американских одномоторных гидросамолетов (на этот раз - поплавковых) фирмы Дуглас осуществили первый в истории авиации кругосветный перелет по маршруту США - Алеутские острова - Япония - Китай - Средний Восток - Европа - Гренландия - США протяженностью 42398 км. Они были изготовлены по специальному правительственному заказу и отличались большим объемом топливных баков и особой конструкцией шасси, позволявшей быстро менять поплавки на колеса и наоборот. Из-за многочисленных летных происшествий воздушное путешествие заняло более полугода (с 6 апреля по 28 сентября), но время перелета самолеты 66 раз совершали посадку и вновь отправлялись в путь. В полет стартовало четыре самолета - «Сиэтл», «Бостон», «Новый Орлеан» и «Чикаго», родных берегов же достигло два - «Чикаго» и «Новый Орлеан».

Три года спустя английский экипаж под руководством сэра Алана Кобхэма, стартовав в Англии, облетел на «летающей лодке» Шорт «Сингапур-Г вокруг африканского континента с целью продемонстрировать возможности авиации для связи доминиона со своими колониями .

Это только немногие примеры из числа дальних авиационных перелетов, которыми прославились 20-е годы.

Несомненно, наиболее заманчивым был маршрут Европа - Америка. Создание авиалинии, соединяющей Старый и Новый Свет, обеспечил бы предпринимателям надежную прибыль из-за большого числа потенциальных пассажиров. Вскоре после перелета Атлантики в 1919 г. на NC-4 итальянский авиаконструктор Джованни Капрони, получивший известность в годы первой мировой войны благодаря своим многомоторным бомбардировщикам, приступил к постройке трансатлантического пассажирского самолета - „летающей лодки“ Са-60. Это был поистине амбициозный замысел. Самолет должен был перевозить 100 пассажиров на расстояние более 6000 км. Он имел 8 моторов мощностью по 400 л.с. Для того, чтобы поднять в воздух огромный вес полезной нагрузки и топлива, Капрони установил на самолете одно за другим три трипланных крыла, подкрепленных бесчисленными стойками и расчалками (рис. 1.63).

В первой половине 1921 г. начались испытания этого воздушного гиганта. Из-за огромного аэродинамического сопротивления девятикрылой машины она с трудом поднималась с воды. Во втором полете произошла авария - на высоте 18 м самолет потерял устойчивость (что неудивительно, учитывая отсутствие на Са- 60 хвостового оперения). Не выдержав перегрузки, сломалось одно из крыльев, и самолет упал в воду. Так бесславно закончилась первая попытка создания трансокеанского авиалайнера .

С современных позиций очевидно, что задача, которую поставил перед собой Дж. Капрони, была невыполнимой. Самолеты с дальностью и пассажировместимостью, запланированными итальянским конструктором, появились только после второй мировой войны. Авантюра с Са-60 свидетельствует, что в начале 20-х годов научный уровень проектирования самолетов был еще весьма низок.

Посте неудачи с полипланом Капрони попытки создания трансатлантической самолетной авиалинии на время были оставлены. Воздушные перевозки из Европы в С ША и обратно стали осуществляться с помощью дирижаблей. Конструкторы гидросамолетов. исходя из возможностей авиатехники того времени, выбрали для себя более реальные задачи - создание 10-20-местных „летающих лодок“, рассчитанных на полет дальностью порядка тысячи километров со скоростью 150–180 км/ч. В основном они должны были использоваться для воздушных перевозок над морем, например, для полетов из США на острова Тихого океана и Карибскою моря. Кроме лога, со второй половины 20-х годов, когда закончилась послевоенная эйфория, вновь стало уделяться внимание развитию военной гидроавиации.

Развитие послевоенной гидроавиации характеризуется особенностями, типичными для всей авиации 20-х годов. В конструировании „летающих лодок“ существовало два направления: создание металлических монопланов и создание бипланов деревянной или смешанной конструкции. Первое направление было типично для немецких авиаконструкторов, второе - для конструкторов Англии, США и других стран.

Пионером металлического гидросамолетостроения был К. Дорнье. Еще в годы червой мировой войны он построил несколько тяжелых „летающих лодок“ серии Rs», сделанных из металла, только в обшивке крыла частично использовалось полотно. Первые его «лодки» представляли собой бипланы, но с 1917 г. Дорнье начал применять монопланную схему. Конструкторский опыт военных лет получил развитие в 20-е годы. В этот период Дорнье спроектировал и построил 16 моделей «летающих лодок» различного назначения .

Рис. 1.64 Дорнье «Валь»

Одной из самых известных «лодок» К. Дорнье был двухмоторный самолет «Валь», созданный в 1922 г. (рис. 1.64). Он имел оригинальную конструкцию. Фюзеляж представлял собой лодку из дюралюминия с широким плоским днищем. Вместо привычных боковых поплавков в нижней части фюзеляжа были сделаны выступы «жабры» в форме короткого толстого крыла. Плоскодонность лодки в сочетании с боковыми поплавками-выступами обеспечивали хорошую устойчивость при взлете посадке и движении по воде. Основное крыло размахом 22,5 м имело металлический каркас и полотняную обшивку. Чтобы крыло не касалось волн при взлете и посадке оно было приподнято над лодкой на стойках и подкосах (схема «парасоль»). Сверху на крыле располагалась силовая установка из двух тандемно расположенных двигателей с тянущим и толкающим винтами. Такая компоновка двигателей позволяла максимально удалить пропеллеры от водной поверхности и тем самым защитить их от брызг, образующихся при быстром движении «лодки» по воде. Экипаж самолета состоял из 3 человек, в пассажирском варианте «Валь» мог брать на борт 9 пассажиров Максимальная скорость полета составляла 180 км/ч, дальность - свыше 1000 км.

Отличная устойчивость на воде, большой запас прочности, неплохие для своего времени летные данные, сопоставимые с характеристиками обычных транспортных самолетов с колесным шасси, обеспечили успех «лодке». Всего было построено около 300 Дорнье «Валь», что в условиях мелкосерийного производства послевоенных лет представляет собой большую величину. В связи с тем, что Германии запрещалось иметь самолеты большой грузоподъемности, самолет строился на заводах Дорнье в Швейцарии и Италии. Он применялся в СССР, Испании, Нидерландах, Чили, Аргентине, Японии. Югославии как пассажирский, транспортный, военный. На ней установлено 20 мировых рекордов .

Благодаря плоскому днищу корпуса лодки Дорнье «Валь» мог садиться и взлетать не только с воды, но и со снега или льда. Эта особенность предопределила использование самолетов в полярных экспедициях. В мае 1925 г. группа исследователей пол руководством Р. Амундсена отправилась на Дорнье «Валь» с острова Шпицберген к Северному полюсу, но не долетала до него 250 км из-за поломки одного из моторов В СССР «лодки» Дорнье также применяли для полетов в Арктике .

Если возможности аэродромов в какой-то степени ограничивали габариты и вес обычных самолетов, то для гидросамолетов такого ограничения не существовало. Поэтому на основе самолета «Валь» К. Дорнье построил несколько типов «летающих лодок», все увеличивающихся размеров и веса. В 1926 г., когда руководство западных стран сняло ограничения на размер и грузоподъемность строящихся в Германии самолетов, Дорнье сконструировал «Супер Валь» - увеличенный вариант «Валя» с двумя мотогондолами над крылом, по два двигателя Бристоль «Юпитер» в каждой. В двух раздельных кабинах «лодки» могли разместиться 21 человек. «Супер Валь» строился серийно в Германии по заказу «Люфтганзы». Лицензионное производств.: самолета велось также в других странах.

Однако самым известным гидросамолетом К. Дорнье стал Дорнье Do X. Построенная в 1929 г., эта 12-моторная «летающая лодка» (рис. 1.65) была самым большим самолетом в мире. Она имела размах крыла 48 м, общую мощность двигателей - 7200 л.с., взлетный вес - 52 тонны. Двигатели была скомпонованы попарно в шести мотогондолах, установленных над крылом на «моторной палубе» Первоначально применяли Бристоль «Юпитер», выпускавшиеся по лицензии немецкой фирмой «Сименс», затем их заменили на американские Кертисс «Конкверор». Ог ромные размеры аппарата обусловили большие нагрузки на органах управления в кабине, ведь бустеры в то время еще не были известны. Чтобы уменьшить усилия на штурвале, на элеронах и рулях высоты установили компенсаторы - небольшие поверхности, кинематически связанные с рулевыми плоскостями и уравновешивающие момент аэродинамических сил, возникающий при отклонении рулей. Нормальная пассажировместимость Do X составляла 66 человек, а в одном из показательных полетов, 31 октября 1929 г., самолет поднял 169 человек! . Этот рекорд продержался 20 лет.

Рис. 1.65 Дорнье Do X

Рис. 1.66. Пассажирский салон Dо X

Do X создавался как трансатлантический пассажирский самолет. Чтобы пассажиры чувствовали себя удобно во время многочасового полета, конструкторы постарались обеспечить их максимальным комфортом, по уровню сравнимым с условиями на лучших океанских пассажирских судах. На самолете имелись спальные отсеки, гостиная. обставленная дорогой мебелью, курительная комната, ванная, кухня и даже небольшая столовая.

Прежде, чем начать полеты через океан с пассажирами, было решено отправить на Do X в испытательный полет в Южную Америку и в США. Это воздушное путешествие длилось почти полтора года и выявило много недостатков, делающих невозможным коммерческое применение самолета на трансатлантических линиях Главным из них было то, что аэродинамическое качество самолета оказалось ниже расчетного, а двигатели расходовали слишком много топлива: каждый час полета опорожнял топливные баки на 1818 литров. По современным оценкам, имея на борту 66 пассажиров и 6 членов экипажа, Do X, при взлетном весе 48 тонн и скорости полета 174 км/ч, обладал дальностью всего около тысячи километров .

В результате заказов на самолет от коммерческих фирм не последовало. Всего было построено три Do X, два из них продали в Италию, где они использовались военными для экспериментальных целей.

Основным техническим недостатком многомоторных «летающих лодок» Дорны была неудачная компоновка двигателей. Установка моторов на стойках над крылом надежно защищала их от попадания брызг при движении по воде, однако создавала большое аэродинамическое сопротивление. Кроме того, тандемное расположение двигателей уменьшало КПД заднего пропеллера, работающего в завихренном потоке воздуха; имелись проблемы и с охлаждением второго мотора.

Примененные Дорнье «жабры» также оказались не лучшим техническим решением. Как показали исследования, из-за малого удлинения они были источником большого индуктивного сопротивления .

Несмотря на конструктивные недостатки первых немецких «летающих лодок», работы Дорнье по гидроавиации имели большое значение. В частности, появление самолета Дорнье «Валь» повлияло на переход к металлическим конструкциям с монопланным крылом в гидросамолетостроении. Так, во Франции в начале 30-х годов появились многомоторные металлические «лодки» с подкосным монопланным крылом: четырехмоторная Латекуэр-300 и шести моторная Блерио-5190 «СантосДюмон» (рис. 1.67). Построенные в единичных экземплярах, эти самолеты использовались для перевозки пассажиров и грузов через Южную Атлантику между Французскими владения ми в Африке и Южной Америке (линия Дакар - Натал).

В целом можно сказать, что роль К. Дорнье в развитии «летающих лодок» аналогична роли Г. Юнкерса в развитии сухопутных самолетов.

Другим немецким конструктором, специализирующимся на постройке металлических «летающих лодок» с монопланным крылом, был Адольф Рорбах. Также как Дорнье, он, чтобы избежать неприятностей со стороны союзнической контрольной комиссии (напомню, что его пассажирский четырехмоторный самолет был уничтожен в 1922 г. по указанию комиссии как выходящий за рамки ограничений Версальского договора), организовал производство в другой стране - нейтральной Дании. В середине 20-х годов Рорбах создал там двухмоторную «летающую лодку» Ro-2. По сравнению с «Валем» самолет Рорбаха имел другую компоновку крыла, с большим поперечным «V», чтобы избежать касания воды при случайном крене. Корпус лодки был значительно уже, а вместо «жабр» использовались подкрыльевые поплавки (в отличие от других «лодок», где поплавки служили только для боковой остойчивости на воде, в конструкциях Рорбаха они, так же, как и корпус, обеспечивали плавучесть аппарата). Двигатели Роллс-Ройс «Игл» мощностью по 360 л.с. располагались над крылом, но не в тандем, а по одному, в ряд.

Рис. 1.67. Блерио «Сантос-Дюмон»

Отличия имелись и во внутренней конструкции самолетов. Вместо обычных лонжеронов крыло у Рорбаха поддерживалось коробчатой силовой конструкцией с работающей обшивкой (так называемым «кессоном»). К кессону крепились носок и законцовка, образующие вместе профиль крыла.

После успешных испытаний Ro-2 в порту Копенгагена 10 таких самолетов заказала Япония для своих ВМС .

После успеха с Ro-2, в 1926 г. Рорбах занялся проектированием трехмоторных коммерческих летающих лодок. Первой была 10-местная Рорбах «Роланд» с моторами BMW- IV, приобретенная «Люфтганзой» в количестве 9 экземпляров. За ней последовала лодка «Ромар», способная перевозить 12–16 пассажиров в двух закрытых кабинах. Три таких самолета купила «Люфтганза» для полетов над Балтикой, один приобрели французские ВМС. На ней стояли новые немецкие двигатели BMW-VI.

Во второй половине 20-х годов завод Рорбаха в Копенгагене выпустил также две двухмоторные «летающий лодки» - пассажирскую «Рокко» и грузовую «Ростра». Первая была снабжена двигателями Роллс-Ройс «Кондор-3», вторая - радиальными двигателями «Юпитер-VI» .

Несмотря на все усилия, Рорбаху не удалось получить крупных заказов на свою весьма дорогостоящую продукцию. В 1931 г., в обстановке мирового экономического кризиса, фирма была закрыта.

Примером большой американской «летающей лодки» рассматриваемого периода может служить самолет Консолидейтед «Коммодор» (рис. 1.68). Этот двухмоторный моноплан с приподнятым на стойках над фюзеляжем крылом проектировался как дальний военно-морской разведчик, но применялся также как пассажирский, спорный перевозить от 20 до 32 человек. Всего было построено около 50 самолетов, разных по назначению и типу двигателей .

В Англии самым известным производителем «летающих лодок» была фирма Шорт, внешне они мало отличались от «лодок» периода первой мировой войны: для них было характерно бипланное крыло с расположенными в промежутке между крыльями двигателями и фюзеляж-лодка с килеватым днищем. Таким образом, в отношении общей компоновки гидросамолетов (впрочем, как и самолетов других типов) английские авиаконструкторы были достаточно консервативны. Однако имелось одно существенное отличие - если «лодки» времен мировой войны были целиком деревянные, то на самолетах фирмы Шорт корпус «летающей лодки» имел металлическую конструкцию.

Рис. 1.68. Консолидейтед «Коммодор»

Существенным недостатком древесины как конструкционного материала было то. что она впитывает воду. Несмотря на защитные лакокрасочные покрытия корпус деревянной «летающей лодки» постепенно пропитывался влагой. В результате вес самолета увеличивался, иногда на несколько сотен килограммов. Это и послужило стимулом к использованию металла.

Освальд Шорт запатентовал идею металлического корпуса для «летающих лодок в 1921 г. В патенте он писал: „Данное изобретение касается конструкции фюзеляжей или корпусов „летающих лодок“ для металлических самолетов, в которых легкий и прочный металлический сплав, такой же как дюралюмин, может быть с успехом и безопасностью применен для создания основных частей конструкции, а также конструкции, в которой внешняя металлическая оболочка является основным силовым элементом“ (цит. по ). Как следует из сказанного, О. Шорт был не только инициатором использования металла в конструкции „летающих лодок“, но также сторонником применения металлической работающей обшивки.

Первую „летающую лодку“ с металлической работающей обшивкой фирма Шорт построила в 1924 г. на основе двухмоторной „лодки“ времен войны Шорт F.5. Однако, опасаясь коррозии дюралюминия под воздействием морской воды, правительство Англии отказалось от покупки гидросамолетов с металлическим корпусом. Только после того, как коррозийная стойкость обшивки была усилена путем нанесением цинкового покрытия, идеи О. Шорта получили применение.

Наиболее известные „летающие лодки“ фирмы Шорт в 20-е годы - S.5 „Сингапур“ (1926 г.) и S.8 „Калькутта“ (1928 г.). Первый из этих самолетов был двухмоторным дальним морским разведчиком. Он имел хорошие для своего времени летные характеристики (в частности, этобыла единственная тяжелая „летающая лодка“ 20-х годов, максимальная скорость которой превышала 200 км/ч) и в различных модификациях применялся до конца 30-х годов. S.8 „Калькутта“ (рис. 1.69) представляла собой трехмоторный пятнадцатиместный пассажирский биплан, ставший серьезным конкурентом известному английскому пассажирскому самолету HP.42 на маршруте Англия - Индия. Почти не уступая HP.42 в скорости, Калькутта» привлекала большей безопасностью при полетах над морскими просторами. Всего построили 16 самолетов S.8.

Самой крупной «летающей лодкой» - бипланом 20-х годов был морской разведчик и бомбардировщик Блекберн «Айрис». Площадь крыла этого самолета, получившего известность своими дальними перелетами в 1927–1928 гг., составляла 230 м 2, взлетный вес - более 13тонн. В конструктивном отношении он уступал «лодкам» фирмы Шорт. Деревянная конструкция и коробчатое бипланное хвостовое оперение делали его устаревшим. Поэтому ВМС заказало только 4 таких самолета.

В 1933 г. «Айрис» уступил пальму первенства многоцелевому военному гидросамолету Шорт R-6/28 (рис. 1.70). Этот 6-моторный самолет с размахом 36.6 м имел максимальный взлетный вес 31700 кг и долгое время был второй по величине «летающей лодкой» в мире (после Do-X). Конструкция его была типично «шортовской»: биплан с металлическом каркасом и двигателями, расположенными в мотогондолах между крыльями. Как и другие «воздушные гиганты» того времени, самолет не стал серийным .

Наряду с «летающими лодками» получили распространение самолеты-амфибии. Возможность взлета и посадки и с суши, и с воды делали этот тип самолета особенно привлекательным для использования в тех областях, где не имелось специальных взлетно-посадочных площадок. Образно выражаясь, амфибию можно назвать «воздушным вездеходом».

Рис. 1.69. Шорт «Калькутта»

Рис. 1.70. Шорт R-6/28

Самолеты-амфибии появились еще в начале 1910-х годов . Однако большой вес и аэродинамическое сопротивление сложного поплавково-колесного шасси заметно ухудшали и без того невысокие летные характеристики самолетов Поэтому в годы первой мировой войны, когда скорость, скороподъемность и маневренность приобрели особое значение, этот тип летательных аппаратов почти полностью вышел из употребления.

Рис. 1.71. Самолет-амфибия Лоинг ОA-1С

После войны стала развиваться коммерческая авиация, и требования к самолетам изменились. Широкий выбор возможных условий эксплуатации амфибий возродил интерес к этим самолетам.

Одним из первых успешных послевоенных самолетов-амфибий был двухместный Лоинг OA-1С (рис. 1.71). Он был построен в США в 1924 г. Мощный 12-цилиндровый двигатель фирмы Паккард и необычный способ соединения фюзеляжа с поплавком без зазора между ними, позволяющий уменьшить лобовое сопротивление, обеспечили самолету такие же характеристики, как у знаменитого DH-4 с колесным шасси. С убранными в ниши в центральном поплавке колесами ОА-1С мог развивать скорость до 196 км/ч - больше других гидросамолетов того времени, обладая при этом удовлетворительной весовой отдачей - 31 %. Выступающий вперед поплавок хорошо защищал мотор и пропеллер от брызг.

Самолет имел долгую жизнь: одна из модификаций производилась в годы второй мировой войны. Лоинг ОА-1 применялся в армии, военно-морских силах, береговой охране и как коммерческий самолет.

Дальнейшее развитие самолетов-амфибий в США связано с именем И. И. Сикорского, эмигрировавшего из России в 1918 г. Он первым начал выпускать специализированные пассажирские самолеты этого типа. S-38, появившийся в 1928 г., представлял собой двухмоторный полутораплан с 8-местной пассажирской кабиной. Конструкция носила отпечаток американских «летающих лодок» серии NC, созданных Г. Кертиссом в конце первой мировой войны: двигатели были установлены на стойках между крыльями, хвостовое оперение с помощью двух балок соединялось с крылом (рис. 1.72). Внешне неказистый, получивший прозвище «гадкий утенок» , этот самолет, тем не менее, принес известность и коммерческий успех и конструктору, и пассажирской авиакомпании «Пан Лмерикен», первой начавшей применять самолеты Сикорского. Надежность, разнообразные условия базирования и большой запас мощности позволяли применять S-38 в самых трудных условиях. Самолет взлетал с неподготовленных площадок и водных акваторий в Центральной и Южной Америке, на Гавайях, в Африке. Благодаря сравнительно легким и мощным звездообразным двигателям воздушного охлаждения Пратт-Уитни «Уосп» (420 л.с.) S-38 имел достаточный запас мощности чтобы продолжить полет при отказе одного двигателя (впервые на двухмоторном пассажирском самолете). Он легко маневрировал на воде, мог автономно выруливать из воды на пологий берег. Управляемость на воде была достигнута весьма оригинально - пилот поочередно выдвигал стойки с колесами, создавая тем самым разворачивающий момент. На самолете установлено несколько рекордов скорости и высоты для данного класса амфибий. Всего было построено более 100 S-38.

Рис. 1.72. Сикорский S-38 над Нью-Йорком

По заказу Пан Америкен в 1930 г. И. И. Сикорский на основе самолета S-38 сконструировал 4-моторный S-40 с двигателями Пратт-Уитни «Хорнет» мощностью по 575 л.с. (рис. 1.73). В то время это был самый большой самолет-амфибия в мире. Он мог перевозить 28 пассажиров на расстояние 800 км со скоростью 185 км/ч. Три построенных самолета летали на авиалиниях, соединяющих США с островами Карибского бассейна. О надежности S-40 свидетельствует то, что регулярность полетов составляла 99 %. Однако для начала 30-х годов по конструкции он уже устарел, и вскоре его вытеснили более совершенные пассажирские самолеты.

Удачные «летающие лодки»-амфибии строила также английская фирма Супермарин. Специалисты этой фирмы начали заниматься гидросамолетами еще в годы первой мировой войны. В 1921 г. по заказу ВМС фирма разработала большой палубный самолет-амфибию «Сигалл» с фюзеляжем в форме лодки. Самолет должен был взлетать с палубы авианосца и предназначался, в основном, для дальней морской разведки. Фюзеляж в поперечном сечении имел характерные для «лодок» фирмы Супермарин округлые очертания и отличался хорошей обтекаемостью. Чтобы не мешать разбегу по воде, колесное шасси могло быть повернуто в горизонтальное положение и прижато к нижнему крылу. Для улучшения маневренности на воде сзади имелся киль, поворачивающийся одновременно с рулем направления. Аэродинамическое качество самолета портили многостоечное бипланное крыло и расположенный между крыльями двигатель Нэпир «Лайон» без обтекателя, поэтому максимальная скорость не превышала 175 км/ч. Экипаж состоял из трех человек - пилота в передней кабине, стрелка и наблюдателя - в задней, за крылом. Имея взлетный вес 2620 кг, «Сигалл» был одно время самым тяжелым палубным самолетом. Шесть построенных самолетов несли службу на авианосном корабле Королевского флота «Игл».

Рис. 1.73. Сикорский S-40

Другим самолетом-амфибией фирмы Супермарин была «летающая лодка» «Си Лайон». По назначению это был истребитель, поэтому самолет одноместный, намного меньших размеров и веса. Его прототипом послужил гоночный Супермарин «Си Лайон», завоевавший первое место в состязаниях гидросамолетов на приз Шнейдера в Неаполе в 1922 г. Для уменьшения лобового сопротивления двигатель закрыли кожухом-обтекателем. При той же мощности силовой установки (450 л.с.) самолет был почти вдвое легче, чем «Сигалл» и мог развивать скорость до 250 км/ч .

Французские гидросамолеты первых послевоенных лет могут быть представлены одномоторными «летающими лодками» фирмы FBA. Эта фирма стояла у истоков развития гидросамолетов, первая ее «летающая лодка» создана еще до начала мировой войны. В 1923 г. инженеры FBA построили весьма удачную модель FBA-17 с двигателем «Испано-Сюиза» в 150 л.с. До 1930 г. было произведено 229 этих двухместных гидросамолетов-бипланов, в основном, для ВМС Франции.

Таблица 1.8. Характеристики послевоенных «летающих лодок».

* Амфибия

Рис. 1.74. SM-55 на подлете к Чикаго

Развитием этой машины явилась «лодка»-амфибия FBA-19 с более мощным двигателем «Испано-Сюиза» мощностью 350 л.с. (1924 г.). Этот трехместный самолет, колеса которого, также как и на отмеченных выше «амфибиях», могли подтягиваться пилотом с помощью лебедки к крылу, использовался как в качестве военного разведчика, так и для коммерческих целей .

По сравнению с немецкими и английскими «летающими лодками- 20-х годов. „FBA“ имели фанерную обшивку корпуса и, в принципе, мало чем отличались от однотипных машин времен первой мировой войны.

Говоря о „летающих лодках“ 20-х - начала 30-х годов, нельзя не упомянуть об итальянском самолете Савойя-Маркстти SM-55. Этот двухмоторный морской разведчик и бомбардировщик получил известность благодаря ряду впечатляющих трансконтинентальных перелетов. В 1925 г. на нем был выполнен полет из Италии в Австралию и обратно, а в начале 30-х годов крупные соединения самолетов, возглавляемые министром авиации генералом И. Бальбо, пересекли Атлантический океан. В перелете Рим - Рио-де-Жанейро (1930–1931 гг.) участвовало 14 SM-55, а из Рима в Чикаго летом 1933 г. вылетело 24 самолета! . Все самолеты достигли цели (рис. 1.74), что свидетельствовало о их высокой надежности. Однако в конструктивном отношении самолет, выполненный целиком из дерева, трудно отнести к передовым. Двухлодочная схема, очень толстое крыло с открытой кабиной экипажа а носовой части центроплана, расположенная нал крылом силовая установка-тандем, установленное на балках трехкилевое оперение создавали большое аэродинамическое сопротивление. Это, а также отмеченные выше недостатки дерева как материала для гидросамолетов, в 30-е годы сделало его бесперспективным как военную машину. Пять купленных СССР SM-55 применялись как пассажирские для воздушных перевозок вдоль Тихоокеанского побережья страны .

В Советском Союзе в 20-е годы основные надежды в развитии гидроавиации были связаны с именем Д. П. Григоровича, конструктора известных „летающих лодок“ периода первой мировой войны М-5 и М-9. Однако попытки создать удачный гидросамолет путем совершенствования сильно устаревших „лодок“ военной поры не увенчались успехом. „Опытное и серийное производство морских самолетов лодочного ина у нас, к сожалению, продолжает оставаться в зачаточном состоянии из-за недостатка конструкции, базы для опытного строительства и конструкторских сил.

Группа Ришара , насколько мне известно, не хочет работать над конструированием лодок и охотнее работает над самолетами с поплавками. Группа Григоровича не дала и не обещает дать в ближайшее время ожидаемых от нее результатов“, - писал конце 20-х годов заместитель начальника ВВС Я. И. Алкснис . Первые удачные гидросамолеты отечественной конструкции появились в СССР только в начале 30-х годов. Это были ближний морской разведчик М БР-2 конструкции Г. М. Бериева и многоцелевой самолет-амфибия Ш-2 В. Б. Шаврова. Обе машины были одномоторными цельнодеревянными „летающими лодками“, но МБР-2 имел свободнонесущее монопланное крыло, а Ш-2 был выполнен по схеме полутораплан. Трехместный МБР-2 с двигателем M-I7 мощностью 500 л.с. (с 1935 г. на самолете ставился двигатель М-34, 750 л.с.) состоял на вооружении ВМС, в 30-е годы было построено 1365 самолетов. Ш-2 с М-11 мощностью 100 л.с. широко использовался для перевозки пассажиров и грузов, для ледовой разведки и т. д. в малоосвоенных районах Сибири. Дальнего Востока и Крайнего Севера. Он мог взлетать и садиться на небольшие сухопутные аэродромы, а при их отсутствии - на реки и зера, брал на борт 3–4 человек. С 1932 по 1934 гг. авиапромышленность выпустила около 270 Ш-2.

Так как производство собственных гидросамолетов в СССР только разворачивалось, „летающие лодки“ приобретали также за рубежом, в основном у Италии. Выше ле упоминалось о поставках в СССР Дорнье „Валь“ и SM-55. В 1931 г. советское равительство закупило несколько итальянских одномоторных „лодок“ Савойя- Маркетти SM-62, а с 1932 г. они выпускались по лицензии в Таганроге под маркой МБР-4 (всего изготовлен 51 самолет) .

В период, когда скорость полета самолетов составляла около 200 км/ч, „летающие лодки“ имели благодатную почву для развития. Тихоходность летательных аппаратов делала почти незаметной аэродинамические недостатки угловатых форм „лодки“ подкрыльевых поплавков, да и формы самолетов с обычным шасси были весьма далеки от совершенства. Как видно из табл. 1.9, „летающая лодка“ S-8, благодаря более мощным двигателям и большей нагрузке на крыло, даже превосходила по скорости пассажирский самолет „Аргоси“ с колесным шасси при практически один» коком числе пассажирских мест. Единственное, в чем «летающие лодки» уступали «нормальному» самолету, это эксплуатационные расходы. Гидросамолеты, подверженные агрессивному воздействию соленой воды, чаше требовали ремонта: дополнительные расходы были связаны с доставкой пассажиров и грузов с берега и на берег с более трудоемкой процедурой заправки горючим; сложнее было обеспечить сохранность самолета при стоянке, особенно в непогоду. Однако эти недостатки компенсировались большей безопасностью полета на «летающей лодке» над водные просторами, возможностью эксплуатации в необорудованных аэродромами района^ Конец 20-х и первую половину 30-х годов называют «золотым веком» «летающих лодок» .

Таблица 1.9. Сравнение характеристик английских трехмоторных пассажирских бипланов с колесным и лодочным шасси .

* a - себестоимость перевозок, цент/пасс км

За исключением работающей металлической обшивки в конструкции фюзеляжа «летающие лодки» мало что дали для технического прогресса в авиации: наоборот многие идеи конструкторы гидросамолетов брали из опыта строительства обычных самолетов. Основная заслуга «летающих лодок» и амфибий 20-х годов состоит в освоении новых авиационных маршрутов, налаживании воздушной связи с отдаленными частями Земного шара, изучении труднодоступных географических зон, е накоплении опыта полетов над морями и океанами. Все это сослужило важную роль в развитии дальних пассажирских перевозок, способствовало повсеместному распространению достижений цивилизации.

Из книги История самолётов, 1919–1945 автора Соболев Дмитрий Алексеевич

«Летающие лодки»: завершающий этап развития Революционные изменения в конструкции гражданских самолетов, происшедшие в начале 30-х годов, оказали глубокое влияние на прогресс не только аппаратов с обычным колесным шасси, но и на развитие гидроавиации. Гидросамолеты

Из книги Битва за звезды-1. Ракетные системы докосмической эры автора Первушин Антон Иванович

Летающие диски Третьего рейха Первые сведения о секретной программе нацистов по созданию летательных аппаратов совершенного нового типа появились сразу после окончания войны. В частности, утверждалось, будто бы в ракетном центре Пенемюнде были построены и испытаны

Из книги Чудовища морских глубин автора Эйвельманс Бернар

Из книги Аненербе. Оккультный демарш СС автора Паль Лин фон

Летающие тарелки рейха Чарльз Форт считал, что все мы живём на дне огромного океана и не представляем, что делается на его поверхности. Под поверхностью он подразумевал тот бесконечный космос, в котором плывёт наша планета по своей орбите. Периодически с этого верха в наш

автора Кубеев Михаил Николаевич

Летающие эскадроны смерти В Ветхом Завете говорится, что из десяти казней египетских, которым Бог подверг фараона, – восьмой (наиболее жестокой) была саранча. Это произошло в 1300 году до н. э., во времена правления фараонов из IX династии.«Тогда Господь сказал Моисею:

Из книги 100 великих катастроф автора Кубеев Михаил Николаевич

ЛЕТАЮЩИЕ ЭСКАДРОНЫ СМЕРТИ В Ветхом Завете говорится, что из десяти казней египетских, которым Бог подверг фараона, – восьмой (наиболее жестокой) была саранча. Это произошло в 1300 году до н. э. во времена правления фараонов из XIX династии.«Тогда Господь сказал Моисею:

Из книги От Скифии до Индии [Древние арии: мифы и история] автора Бонгард-Левин Григорий Максимович

ЛЕТАЮЩИЕ РИШИ С этим кругом представлений неразрывно связаны и сведения о «полярных» явлениях. Таким образом, можно определенно сказать, что и «арктический» сюжет составлял часть общего «северного цикла», знакомого арийским племенам уже в общеарийский период. Такой

Из книги Тайны происхождения человечества автора Попов Александр

Летающие крепости Но технические достижения древних не ограничивались прототипами лазера и ядерных бомб. Процивилизации также обладали… летательными аппаратами.«…Когда наступило утро, Рама, взяв небесный корабль, приготовился взлететь. Тот корабль был большим и

Из книги Схватка за Антарктиду. Книга 1 автора Осовин Игорь

Часть 3 ЛЕТАЮЩИЕ ОБЪЕКТЫ СССР Версия о том, что обосновавшиеся в Новой Швабии нацисты передали США часть своих новейших технологий, не лишена правдоподобия «Автор заметки сообщал, что русские напали на нашу мирную полярную экспедицию в Антарктиде и разгромили её.

Из книги Загадки древности. Белые пятна в истории цивилизации автора Бурганский Гарий Еремеевич

ЛЕТАЮЩИЕ ИНКИ Рисунки Наски можно увидеть только с высоты (с самолета или вертолета), и потому нет никакого сомнения, что они адресовались "кому-то наверху". Именно это натолкнуло некоторых исследователей на другие, более смелые гипотезы.В 1977 году руководитель одной из

автора Козырев Михаил Егорович

Из книги Авиация Красной армии автора Козырев Михаил Егорович

Из книги Авиация Красной армии автора Козырев Михаил Егорович

Из книги Чудесный Китай. Недавние путешествия в Поднебесную: география и история автора Тавровский Юрий Вадимович

Летающие горы Чжанцзяцзе Целая горная страна на северо-западе провинции Хунань окружает город Чжанцзяцзе. Только в 1980-е годы эти места привлекли внимание китайских специалистов по туризму. За развитие новой туристической зоны Улинъюань взялось государство: был создан

Летающая подводная лодка - летательный аппарат, совместивший в себе способность гидроплана совершать взлёт и посадку на воду и способность подводной лодки передвигаться в подводном положении.
Если вы когда-нибудь смотрели или собираетесь посмотреть фильм «Первый мститель», то вы сможете увидеть именно такой самолет-подлодку в начале фильма.

В СССР накануне второй мировой войны был предложен проект летающей подводной лодки - проект, никогда не реализованный. С 1934 по 1938 гг. проектом летающей подводной лодки (сокращённо: ЛПЛ) руководил Борис Ушаков. ЛПЛ представляла собой трёхмоторный двухпоплавковый гидросамолет, оборудованный перископом. Ещё во время обучения в Высшем морском инженерном институте имени Ф. Э. Дзержинского в Ленинграде (ныне Военно-морской инженерный институт), с 1934 года и вплоть до его окончания в 1937 году, студент Борис Ушаков работал над проектом, в котором возможности гидросамолёта дополнены возможностями подводной лодки. В основе изобретения был гидросамолёт, способный погружаться под воду.

В 1934 году курсант ВМИУ им. Дзержинского Б.П.Ушаков представил схематичный проект летающей подводной лодки (ЛПЛ), который впоследствии был переработан и представлен в нескольких вариантах для определения остойчивости и нагрузок на элементы конструкции аппарата.
В апреле 1936 года в отзыве капитана 1 ранга Сурина указывалось, что идея Ушакова интересна и заслуживает безусловной реализации. Через несколько месяцев, в июле, полуэскизный проект ЛПЛ рассматривался в Научно-исследовательском военном комитете (НИВК) и получил в целом положительный отзыв, содержавший три дополнительных пункта, один из которых гласил: «…Разработку проекта желательно продолжать, чтобы выявить реальность его осуществления путем производства соответствующих расчетов и необходимых лабораторных испытаний…» Среди подписавших документ были начальник НИВКа военинженер 1 ранга Григайтис и начальник кафедры тактики боевых средств флагман 2 ранга профессор Гончаров.

В 1937 году тема была включена в план отдела «В» НИВКа, но после его пересмотра, что было очень характерно для того времени, от нее отказались. Вся дальнейшая разработка велась инженером отдела «В» воентехником 1 ранга Б.П,Ушаковым во внеслужебное время.
10 января 1938 года во 2-м отделе НИВКа состоялось рассмотрение эскизов и основных тактико-технических элементов ЛПЛ, подготовленных автором, Что же представлял собой проект? Летающая подводная лодка предназначалась для уничтожения кораблей противника в открытом море и в акватории морских баз, защищенных минными полями и бонами. Малая подводная скорость и ограниченный запас хода под водой ЛПЛ не являлись препятствием, так как при отсутствии целей в заданном квадрате (районе действия) лодка могла сама находить противника. Определив с воздуха его курс, она садилась за горизонтом, что исключало возможность ее преждевременного обнаружения, и погружалась на линии пути корабля. До появления цели в точке залпа ЛПЛ оставалась на глубине в стабилизированном положении, не расходуя энергию лишними ходами.

В случае допустимого отклонения неприятеля от линии курса ЛПЛ шла на сближение с ним, а при очень большом отклонении цели лодка пропускала ее за горизонт, затем всплывала, взлетала и вновь готовилась к атаке.

Возможное повторение захода на цель рассматривалось как одно из существенных преимуществ подводно-воздушного торпедоносца перед традиционными субмаринами. Особенно эффективным должно было быть действие летающих подводных лодок в группе, так как теоретически три таких аппарата создавали на пути противника непроходимый барьер шириной до девяти миль. ЛПЛ могла проникать в темное время суток в гавани и порты противника, погружаться, а днем вести наблюдение, пеленгование секретных фарватеров и при удобном случае атаковать. В конструкции ЛПЛ предусматривались шесть автономных отсеков, в трех из которых помещались авиамоторы АМ-34 мощностью по 1000 л.с. каждый. Они снабжались нагнетателями, допускавшими форсирование на взлетном режиме до 1200 л.с. Четвертый отсек был жилым, рассчитанным на команду из трех человек. Из него же велось управление судном под водой. В пятом отсеке находилась аккумуляторная батарея, в шестом – гребной электромотор мощностью 10 л,с. Прочный корпус ЛПЛ представлял собой цилиндрическую клепаную конструкцию диаметром 1,4 м из дюралюминия толщиной 6 мм. Помимо прочных отсеков, лодка имела пилотскую легкую кабину мокрого типа, которая при погружении заполнялась водой, При этом летные приборы задраивались в специальной шахте.

Обшивку крыльев и хвостового оперения предполагалось выполнить из стали, а поплавки из дюралюминия. Этиэлементы конструкции не были рассчитаны на повышенное внешнее давление, так как при погружении затапливались морской водой, поступавшей самотеком через шпигаты (отверстия для стока воды). Топливо (бензин) и масло хранились в специальных резиновых резервуарах, располагавшихся в центроплане. При погружении подводящая и отводящая магистрали водяной системы охлаждения авиамоторов перекрывались, что исключало их повреждение под действием давления забортной воды. Для предохранения корпуса от коррозии предусматривалась окраска и покрытие лаком его обшивки. Торпеды размещались под консолями крыла на специальных держателях. Проектная полезная нагрузка лодки составляла 44,5% от полного полетного веса аппарата, что было обычным для машин тяжелого типа.
Процесс погружения включал четыре этапа: задраивание моторных отсеков, перекрывание воды в радиаторах, перевод управления на подводное и переход экипажа из кабины в жилой отсек (центральный пост управления).»

Моторы в подводном положении закрывались металлическими щитами. ЛПЛ должна была иметь 6 герметичных отсеков в фюзеляже и крыльях. В трёх герметизируемых при погружении отсеках устанавливались моторы Микулина АМ-34 по 1000 л. с. каждый (с турбокомпрессором на взлётном режиме до 1200 л. с.); в герметичной кабине должны были располагаться приборы, аккумуляторная батарея и электромотор. Оставшиеся отсеки должны использоваться как заполненные балластной водой цистерны для погружения ЛПЛ. Подготовка к погружению должна была занимать всего пару минут.

Фюзеляж должен был представлять собой цельнометаллический дюралюминиевый цилиндр диаметром 1,4 м с толщиной стенок 6 мм. Кабина пилота при погружении заполнялась водой. Поэтому все приборы предполагалось устанавливать в водонепроницаемый отсек. Экипаж должен был перейти в отсек управления подводным плаванием, расположенный далее в фюзеляже. Несущие плоскости и закрылки должны изготавливаться из стали, а поплавки из дюралюминия. Эти элементы предполагалось заполнять водой через предусмотренные для этого клапаны, чтобы выровнять давление на крылья при погружении. Гибкие баки горючего и смазочных материалов должны располагаться в фюзеляже. Для коррозионной защиты весь самолёт должен был быть покрыт специальными лаками и красками. Две 18-ти дюймовых торпеды подвешивались под фюзеляжем. Планируемая боевая нагрузка должна была составлять 44,5 % полной массы самолёта. Это типовое значение тяжёлых самолётов того времени. Для заполнения цистерн водой использовался тот же электромотор, что обеспечивал движение под водой.

В 1938 году научно-исследовательский военный комитет РККА постановил свернуть работы по проекту Летающей подводной лодки по причине недостаточной подвижности ЛПЛ в подводном положении. В постановлении говорилось, что после обнаружения ЛПЛ кораблём последний, несомненно, сменит курс. Что снизит боевую ценность ЛПЛ и с большой степенью вероятности приведёт к провалу задания.

Надо отметить, это был не единственный отечественный проект летающей подводной лодки. В то же время, в тридцатых годах прошлого века, И.В Четвериков представил проект двухместной летающей подводной лодки СПЛ-1 - «самолет для подводных лодок». Если быть точнее, это был гидросамолёт, который в разобранном виде хранился на подводной лодке, а при всплытии его можно было легко собрать. Этот проект представлял собой своеобразную летающую лодку, крылья которой складывались вдоль бортов. Силовая установка откидывалась назад, а поплавки, расположенные под крыльями, прижимались к фюзеляжу. Частично складывалось и хвостовое «оперение». Габариты СПЛ-1 в сложенном виде были минимальными - 7,5х2,1х2,4 м. Разборка самолета занимала всего 3 - 4 минуты, а подготовка его к полету - не более пяти минут. Контейнер для хранения самолета представлял собой трубу диаметром 2,5 и длиной 7,5 метра.

Примечательно, что строительными материалами для такой лодки-самолёта были дерево и фанера с полотняной обшивкой крыла и «оперения», при этом вес пустого самолета удалось снизить до 590 кг. Несмотря на такую, казалось бы, ненадежную конструкцию, во время испытаний пилоту А.В. Кржижевскому удалось достичь на СПЛ-1 скорости 186 км/ч. А ещё через два года, 21 сентября 1937-го, он установил на этой машине три международных рекорда в классе легких гидросамолетов: скорости на дистанции 100 км - 170,2 км/ч, дальности - 480 км и высоты полета - 5.400 м.

В 1936 году самолет СПЛ-1 с успехом демонстрировался на Международной авиационной выставке в Милане.
И этот проект, к сожалению, так и не поступил в серийное производство.

Германский проект

В 1939 в Германии году планировались к постройке крупные подлодки, именно тогда был представлен проект так называемого «Глаза субмарины» небольшого поплавкового самолета, который можно было бы собирать и складывать в кратчайший срок и располагать на ограниченном пространстве. В начале 1940 года немцы приступили к выпуску шести опытных машин под обозначением Ar.231.

Аппараты были оснащены 6-цилиндровыми двигателями воздушного охлаждения «Хирт НМ 501» и имели лёгкую металлическую конструкцию. Для облегчения складывания крыльев небольшая секция центроплана была укреплена над фюзеляжем на подкосах под углом так, что правая консоль была ниже левой, позволяя складывать крылья одно над другим при повороте вокруг заднего лонжерона. Два поплавка легко отсоединялись. В разобранном виде самолет умещался в трубу диаметром 2 метра. Предполагалось, что Аr.231 должен был спускаться и подниматься на борт подлодки при помощи складного крана. Процесс разборки самолета и его уборки в трубчатый ангар занимал шесть минут. Сборка требовала приблизительно столько же времени. Для четырехчасового полета на борту размещался значительный запас топлива, что расширяло возможности при поиске цели.

Первые два аппарата Аr.231 V1 и V2 увидели небо в начале 1941 года, однако они не имели успеха. Летные характеристики и поведение маленького самолета на воде оказались неадекватными. К тому же Аr.231 не мог взлетать при скорости ветра более 20 узлов. Кроме того, перспектива находиться на поверхности в течение 10 минут во время сборки и разборки самолета не очень устраивала командиров подлодок. Тем временем возникла идея обеспечить воздушную разведку с помощью автожира «Фокке-Анхелис Fа-330», и хотя все шесть Аr.231 были закончены постройкой, дальнейшего развития самолет не получил.

«Fa-330» представлял собой простейшую конструкцию с трехлопастным винтом, лишенным механического двигателя. Перед полетом винт раскручивался при помощи специального троса, а далее автожир буксировала лодка на привязи длиной 150 метров.
По существу «Fa-330» являлся большим воздушным змеем, летевшим за счет скорости самой субмарины. Через тот же трос осуществлялась телефонная связь с летчиком. При высоте полета 120 метров радиус обзора составлял 40 километров, в пять раз больше, чем с самой лодки.

Недостатком конструкции была долгая и опасная процедура приземления автожира на палубу лодки. Если ей требовалось срочное погружение, приходилось бросать пилота вместе с его беспомощным агрегатом. На крайний случай разведчику полагался парашют.

Уже в конце войны, в 1944-м, не слишком популярные у немецких подводников «Fa-330» модернизировали до «Fa-336», добавив 60-сильный двигатель и превратив его в полноценный вертолет. На военные успехи Германии эта инновация, впрочем, не слишком повлияла.

Американская RFS-1 или ЛПЛ Рейда

RFS-1 была сконструирована Дональдом Рейдом с использованием деталей самолётов, потерпевших авиа катастрофы. Серьёзная попытка сделать летательный аппарат, способный служить и в качестве подводной лодки, проект Рейда пришёл к нему почти случайно, когда комплект крыльев модели самолёта опал с обшивки и приземлился на фюзеляж одной из его радиоуправляемых субмарин, разработкой которой он занимался с 1954 года. Тогда и родилась идея построить первую в мире летающую подводную лодку.

Вначале Рейд протестировал модели разных размеров летающих субмарин, затем попытался построить пилотируемый аппарат. Как самолёт он был зарегистрирован N1740 и оснащен 4-целиндровым двигателем в 65 л.с. В 1965 году состоялся первый полёт RFS-1, под управлением сына Дона, Брюса, он пролетел более 23 м. первоначально место пилота было в пилоне двигателя, затем перед первым полётом оно было перемещено в фюзеляж.

Для того, чтобы переделать самолёт в подводную лодку, пилоту приходилось убирать пропеллер и закрывать двигатель резиновым “водолазным колоколом”. На вспомогательной мощности, малый 1 л.с. электрический мотор располагался в хвосте, лодка двигалась под водой, пилот использовал акваланг на глубине 3.5 м.
С недостаточной мощностью, RFS-1 Рейда, известный также как Летающая Субмарина, на самом деле летал, кратко, но ему всё же удавалось поддерживать полёт, и он был способен погружаться в воду. Дон Рейд пытался заинтересовать военных данным аппаратом, но безуспешно. Он умер в возрасте 79 лет в 1991 году.

Япония зашла дальше всех

Япония также не могла оставить без внимания такую захватывающую идею. Там самолеты превратились чуть ли не в главное оружие подводных лодок. Сама же машина из разведчика превратилась в полноценный ударный самолет.

Появление такого самолета для подводной лодки, как «Сейран» («Горный туман»), оказалось из ряда вон выходящим событием. Он был фактически элементом стратегического оружия, включавшего в себя самолет-бомбардировщик и погружаемый авианосец. Самолет был призван бомбить объекты Соединенных Штатов Америки, которых не мог достигнуть ни один обычный бомбардировщик. Главная ставка делалась на полную неожиданность.

Идея подводного авианосца родилась в умах имперского морского штаба Японии через несколько месяцев после начала войны на Тихом океане. Предполагалось построить подлодки, превосходящие все созданное до того специально для транспортировки и запуска ударных самолетов. Флотилия таких подлодок должна была пересечь Тихий океан, непосредственно перед выбранной целью запустить свои самолеты, а затем погрузиться. После атаки самолеты должны были выйти на встречу с подводными авианосцами, а далее в зависимости от погодных условий выбирался способ спасения экипажей. После этого флотилия снова погружалась под воду. Для большего психологического эффекта, который ставился выше физического ущерба, способ доставки самолетов к цели не должен был раскрываться.
Далее подлодки должны были либо выйти на встречу судам снабжения для получения новых самолетов, бомб и топлива, либо действовать обычным способом, используя торпедное оружие.

Программа, естественно, развивалась в обстановке повышенной секретности и неудивительно, что союзники впервые услышали о ней лишь после капитуляции Японии. В начале 1942 г верховное командование Японии выдало судостроителям заказ на самые крупные подводные лодки, построенные кем-либо вплоть до начала атомной эпохи в судостроении. Планировалось построить 18 подводных лодок. В процессе проектирования водоизмещение такой ПЛ возросло с 4125 до 4738 тонн, количество самолетов на борту с трех до четырех.
Теперь дело было за самолетом. Вопрос о нем штаб флота обсуждал с концерном Айчи, который, начиная с 20-х годов, строил самолеты исключительно для флота. Флот считал, что успех всей идеи целиком зависит от высоких характеристик самолета. Самолет должен был сочетать высокую скорость, чтобы избежать перехвата, с большой дальностью полета (1500 км). Но так как самолет предусматривал фактически одноразовое применение, тип шасси даже не оговаривался. Диаметр ангара подводного авианосца задавался в 3,5 м, но флот требовал, чтобы самолет помещался в нем без разборки - плоскости можно было только складывать.
Конструкторы Айчи во главе с Токуичиро Гоаке посчитали столь высокие требования вызовом своему таланту и приняли их без возражений. В результате 15 мая 1942 г появились требования 17-Си к экспериментальному бомбардировщику для специальных заданий. Главным конструктором самолета стал Норио Озаки.

Разработка самолета, получившего фирменное обозначение АМ-24 и короткое М6А1, продвигалась на удивление гладко. Самолет создавался под двигатель Ацута лицензионный вариант 12-цилиндрового двигателя жидкостного охлаждения Даймлер-Бенц DB 601. С самого начала предусматривалось использование отсоединяемых поплавков единственной демонтируемой части Сейрана. Так как поплавки заметно снижали летные данные самолета, была предусмотрена возможность сброса их в воздухе в случае возникновения такой необходимости. В ангаре подводной лодки соответственно предусмотрели крепления для двух поплавков.
Летом 1942 г был готов деревянный макет, на котором в основном отрабатывалось складывание крыльев и оперения самолета. Крылья гидравлически поворачивались передней кромкой вниз и складывались назад вдоль фюзеляжа. Стабилизатор складывался вручную вниз, а киль направо. Для работы ночью все узлы складывания покрывались светящимся составом. В результате общая ширина самолета сокращалась до 2,46 м, а высота на катапультной тележке до 2,1 м. Так как масло в системах самолета могло подогреваться еще во время нахождения подводной лодки под водой, самолет в идеале мог запускаться без шасси с катапульты уже через 4,5 минуты после всплытия. 2,5 минуты требовалось, чтобы присоединить поплавки. Все работы по подготовке к взлету могли выполнить только четыре человека.
Конструкция самолета была цельнометаллической, за исключением фанерной обшивки законцовок крыла и тканевой обшивки рулевых поверхностей. Двухщелевые цельнометаллические закрылки могли использоваться в качестве воздушных тормозов. Экипаж из двух человек размещался под единым фонарем. В задней части кабины с января 1943 г было решено установить 13 мм пулемет Тип 2. Наступательное вооружение состояло из 850 кг торпеды либо одной 800 кг или двух 250 кг бомб.

В начале 1943 г на заводе Айчи в Нагое заложили шесть М6А1, два из которых были выполнены в учебном варианте М6А1-К на колесном шасси (самолет назывался Нанзан (Южная гора)). Самолет за исключением законцовки киля почти не отличался от основного варианта, даже сохранил узлы крепления к катапульте.
Одновременно в январе 1943 г заложили киль первого подводного авианосца I-400. Вскоре заложили еще две подлодки I-401 и I-402. Готовилось производство еще двух I-404 и I-405. Одновременно было решено построить десять подводных авианосцев поменьше на два Сейрана. Их водоизмещение было 3300 тонн. Первую из них I-13 заложили в феврале 1943 г (по первоначальному плану эти лодки должны были иметь на борту только один разведчик).

В конце октября 1943 г был готов первый опытный Сейран, полетевший в следующем месяце. В феврале 1944 г был готов и второй самолет. Сейран представлял собой очень элегантный гидросамолет, с чистыми аэродинамическими линиями. Внешне он очень напоминал палубный пикировщик D4Y. Первоначально D4Y действительно рассматривался прототипом для нового самолета, но еще в начале проектных работ такой вариант отклонили. Неготовность двигателя АЕ1Р Ацута-32 определила установку 1400-сильного Ацута-21. Результаты испытаний не сохранились, но они, по-видимому, были успешными, так как вскоре началась подготовка серийного производства.
Первый серийный М6А1 Сейран был готов в октябре 1944 г, еще семь было готово к 7 декабря, когда землетрясение серьезно повредило оборудование и стапели на заводе. Производство было уже почти восстановлено, когда 12 марта последовал налет американской авиации на район Нагойи. Вскоре было решено прекратить серийное производство Сейрана. Это было напрямую связано с проблемами строительства столь больших подводных лодок. Хотя I-400 была готова 30 декабря 1944 г, а I-401 через неделю, I-402 было решено переделать в подводный транспорт, а производство I-404 было остановлено в марте 1945 г при 90% готовности. Одновременно прекратили и производство подлодок тип АМ до готовности довели только I-13 и I-14. Небольшое число подводных авианосцев соответственно привело к ограничению производства подводных самолетов. Вместо первоначальных планов выпуска 44 Сейранов до конца марта 1945 г было выпущено только 14. Еще успели до конца войны выпустить шесть Сейранов, хотя много машин было на различной стадии готовности.

В конце осени 1944 г императорский флот начал готовить пилотов Сейранов, тщательно отбирался летный и обслуживающий персонал. 15 декабря был создан 631 воздушный корпус под командованием капитана Тоцуноке Ариизуми. Корпус входил в состав 1 подводной флотилии, которая состояла только из двух подлодок I-400 и I-401. Флотилия имела в своем составе 10 Сейранов. В мае к флотилии присоединились подлодки I-13 и I-14, включившиеся в подготовку экипажей Сейранов. В течение шести недель тренировок время выпуска трех Сейранов с подводной лодки было сокращено до 30 минут, включая установку поплавков, правда, в бою планировалось запускать самолеты без поплавков с катапульты, на что требовалось 14,5 минут.
Первоначальной целью 1 флотилии были шлюзы Панамского канала. Шесть самолетов должны были нести торпеды, а остальные четыре бомбы. На атаку каждой цели выделялись два самолета. Флотилия должна была отправиться по тому же маршруту, что и эскадра Нагумо во время атаки на Перл-Харбор тремя с половиной годами ранее. Но вскоре стало ясно, что даже в случае успеха такой налет был абсолютно бессмыслен, чтобы повлиять на стратегическую ситуацию в войне. В результате 25 июня последовал приказ направить 1-ю подводную флотилию для атаки американских авианосцев на атолле Улити. 6 августа I-400 и I-401 покинули Оминато, но вскоре на флагмане из-за короткого замыкания вспыхнул пожар. Это заставило отодвинуть начало операции до 17 августа, за два дня до которого Япония капитулировала. Но даже после этого штаб-квартира японского флота планировала провести атаку 25 августа. Однако 16 августа флотилия получила приказ вернуться в Японию, а через четыре дня уничтожить все наступательное вооружение. На I-401 самолеты катапультировали без запуска двигателей и без экипажей, а на I-400 их просто столкнули в воду. Так закончилась история наиболее необычной схемы применения морской авиации во время Второй мировой войны, прервавшая историю подводного самолета на долгие годы.

Тактико-технические характеристики М6А Сейран:

Тип: двухместный бомбардировщик подводной лодки

Двигатель: Ацута 21, 12-цилиндровый жидкостного охлаждения, взлетной мощностью 1400 лс, 1290 лс на высоте 5000 м

Вооружение:

1*13 мм пулемет Тип 2

1*850 кг торпеда, или 1*800 кг бомба, или 2*250 кг бомбы

Максимальная скорость:

430 км/ч у земли

475 км/ч на высоте 5200 м

Крейсерская скорость - 300 км/ч

Время подъема на высоту:

3000 м - 5,8 мин

5000 м - 8,15 мин

Потолок - 9900 м

Дальность полета - 1200 км на скорости 300 км/ч и высоте 4000 м

Пустого - 3300 кг

Взлетный - 4040 кг

Максимальный - 4445 кг

Размеры:

Размах крыла - 12.262 м

Длина - 11,64 м

Высота - 4,58 м

Площадь крыла - 27 кв.м

Наши дни

США сейчас работают над летательным аппаратом Корморан (Cormorant).
Американский инженер Л. Рэйл создал проект Cormorant – бесшумный реактивный беспилотный летательный аппарат на базе подводной лодки, который может быть оснащён как системой оружия ближнего боя, так и разведывательной аппаратурой.

Компания Skunk Works, принадлежащая Lockheed Martin, разрабатывает беспилотный самолет, который будет стартовать с борта субмарины из подводного положения. Skunk Works знаменита тем, что разрабатывала в 60-х годах прошлого века самолеты-разведчики U-2 Dragon Lady и SR-71 Black Bird.

Новая разработка называется Cormorant (баклан). Самолет сможет стартовать из шахты баллистических ракет Trident подводных лодок класса «Огайо». Эти стратегические ракетоносцы перестали быть востребованными с окончанием Холодной войны, и теперь часть из них переделывают в субмарины для спецопераций.
Пуск самолета будет производиться при помощи манипулятора, который будет выводить его на поверхность. После этого дрон раскроет сложенные крылья и сможет лететь. Посадку он будет осуществлять на воду, после чего тот же манипулятор вернет самолет на борт субмарины.

Однако создать такой самолёт, который будет способен выдержать давление на глубине 150 футов, и в то же время достаточно лёгкий, чтобы летать, не простая задача. Ещё одна сложность, субмарины выживают благодаря бесшумности, а самолёт, возвращающийся обратно на лодку может выдать её местонахождение. Ответ Skunk Works: четырёхтонный самолёт с крыльями типа ‘чайка’, способными складываться вдоль тела самолёта, чтобы он мог поместиться в шахту.
Конструкция самолета отличается прочностью – корпус, сделанный из титана, рассчитан на перегрузки, которые могут возникать на глубине в 45 метров, а все пустоты заполнены пенопластом, что повышает прочность. Остальная часть корпуса сжата инертным газом. Надувные резиновые уплотнения предохраняют оружейные отсеки, входные устройства двигателя и другие детали самолёта. Геометрия корпуса выполнена по сложной схеме, которая снижает его радиозаметность. Самолет будет способен выполнять разведывательные или ударные миссии - в зависимости от оборудования, которым его будут оснащать.

За предоставленные материалы спасибо ресурсу: feldgrau.info

История гидропланов началась даже прежде, чем появились первые аэропланы, на заре развития авиации. Поскольку на Земле большая часть поверхности занята водой, люди начали развивать идею создания летающих лодок, способных взлетать и садиться на поверхности воды. Такие воздушные суда получили название гидропланов, а впоследствии гидросамолетов или самолетов-амфибий.

Краткая историческая справка

Исторически сложилось так, что тема создания гидросамолетов раньше всего стала актуальной в странах, в силу особенностей географического положения имеющих обширные водные территории и участки государственной границы, проходящие по воде. Это такие страны, как:

  • Россия;
  • Канада;
  • многие страны Европы;
  • Австралия;
  • Новая Зеландия и другие островные государства.

Практически все страны уже много лет ведут свои разработки гидровоздушных судов, на рынке постоянно появляются новые модели и модификации. Число гидропланов исчисляется уже тысячами, а до насыщения рынка еще далеко, т.к. потребность обеспечения транспортной доступности многих водных районов растет с каждым годом. Заполнить этот транспортный дефицит не в состоянии ни легкомоторные самолеты, ни вертолеты. Самолет-амфибия, который легко взлетает с водной глади и на нее же приземляется здесь вне конкуренции, т.к. помогает решать множество задач в областях:

  • патрулирование и наблюдение на государственной границе, проходящей по воде;
  • мониторинг и наблюдение с целью пресечения противоправных деяний в заповедных водоохранных зонах;
  • участие в поисково-спасательных работах в зоне бедствий и катастроф;
  • участие в тушении пожаров и т.д.

Еще с дореволюционных времен в Российской империи, а затем в СССР и в современной России велись и ведутся работы по разработке, проектированию и производству самолетов-амфибий.

Дореволюционные гидропланы

Работы по созданию летающей лодки, которая может взлетать и садиться на водную поверхность, велись с начала прошлого века. Первой моделью, которая смогла подняться в воздух с воды и затем приводниться, стал гидроплан американского изобретателя Гленна Кертисса. Формой он походил на аэроплан, только вместо шасси были установлены специальные поплавки.

По конструктивным решениям собственно гидропланом можно назвать проект российского инженера Д.П. Григоровича, созданный им в 1913 г. Именно его модель М-1 стала первой в этом классе. В период Первой мировой на вооружении армии Российской империи существовала специальная эскадрилья, как их тогда называли, летающих лодок, разработанных на основе М-1 Григоровича. Это модели М-5 и М-9. К примеру, модель М-5 могла развить скорость в 128 км/ч, при этом максимальная высота полета составляла 4 км, а время полета ограничивалось максимум 5 часами. Оружие на нее не устанавливали, т.к. она выполняла разведывательные задания и производила корректировку огня корабельной артиллерии.

Авиация развивалась стремительно, поэтому гидропланы М-9 уже отличались от предшественников наличием вооружения, на них устанавливались пулеметы, и имелась возможность брать на борт бомбы, их крепили под крыльями. Экипаж состоял из трех человек: летчика, бортового механика, осуществлявшего бомбометание, и стрелка-пулеметчика.

Позднее, уже в годы гражданской войны, гидросамолеты использовались обеими сторонами конфликта, как большевиками, так и «белыми».

В течение Второй мировой изменилось вооружение гидросамолетов, т.к. началось массовое использование торпед. Их устанавливали и на гидросамолеты, а название «торпедоносцы» появилось именно по этой причине. Также до наступления эры реактивных самолетов подводные лодки в обязательном порядке комплектовались легкими складными гидросамолетами, выполнявшими роль разведчиков.

КБ Бериева

Когда появились реактивные самолеты, гидропланы постепенно начали сдавать позиции, т.к. по техническим характеристикам, таким как скорость и дальность полета, они не могли конкурировать с новым поколением самолетов. Но в СССР всегда уделялось большое внимание развитию гидроавиации. Основным создателем этих машин в СССР было ОКБ в Таганроге под началом знаменитого главного конструктора Г.М. Бериева. Под его руководством в период с 30-х до 60-х гг. прошлого века был создан целый ряд гидросамолетов и самолеты-амфибии.

Перед войной были закончены работы над крупными проектами, такими как:

  • МБР-2;
  • Бе-2;
  • Бе-4.

Эти машины успешно принимали участие в военных действиях и отлично себя зарекомендовали. В мирное время конструкторское бюро продолжило свою работу, и были созданы следующие аппараты:

  • Бе-6;
  • реактивный Бе-10.

Самолеты долго состояли на вооружении ВМФ СССР и России, за отличные качества они не раз были отмечены на международном уровне, а также поставили целый ряд рекордов.

Также в конце 1960-х гг. бюро Бериева разработало самолет для пассажирской авиации Бе-30, но, как сообщает Википедия, в массовое производство он так и не был запущен, предположительно, по политическим мотивам. Однако, через 25 лет его восстановленная версия Бе-32К на аэрокосмическом салоне во Франции произвела сильное впечатление на авиаэкспертов.

С 1970-х гг. сфера проектирования в ОКБ Бериева значительно расширилась, и бюро приступило к разработке стратегических военных комплексов:

  • стратегический комплекс А-50;
  • комплекс Ту-142МР.

В то же время все годы шла непрерывная работа по разработке и проектированию реактивных самолетов-амфибий новейшего поколения. Амфибии, работы по проектированию которых велись долгие годы, представлены следующими моделями:

  • Бе-12 (Е);
  • Бе-103;
  • А-40 Альбатрос;
  • А-42ПЭ;
  • Бе-200.

Сфера использования самолетов-амфибий очень широка, начиная от обычного патрулирования и мониторинга и заканчивая проведением поисково-спасательных мероприятий в условиях ЧС. Сейчас ведется разработка новых моделей амфибий – Бе-112 и Бе-101. Также большое внимание уделяется проектированию больших амфибий, обладающих взлетной массой свыше 1000 тонн, которые смогут перевозить больше грузов и пассажиров.

С 2011 г. произошло слияние ОКБ имени Бериева и ОАО «ТАВИА», новая корпорация получила название ОАК «ТАНТК им. Г.М. Бериева». Предприятие занимается не только разработкой, но и запуском в серийное производство, производством модернизационных и ремонтных работ гидросамолетов и военных стратегических комплексов по заказам ВМФ и ВВС РФ.

Семейство амфибий Бериева – Бе-200

Самой известной моделью самолета амфибии считается Бе 200. В настоящее время корпорация ведет активные работы по проектам создания нескольких модификаций на базе этой модели, сертифицированной согласно требованиям международных стандартов.

После старта работ в конце 1980-х гг. первый самолет-амфибия Бе-200 поднялся в воздух в сентябре 1998 г.

Назначение Бе-200

При проектировании самолета амфибии модели Бе 200 использовались наработки, полученные при создании амфибии А-40 «Альбатрос», поставившей 148 мировых рекордов.

Изначально работы велись по созданию амфибии для устранения лесных пожаров специальными жидкостями для гашения огня. При этом ставились сопутствующие задачи, такие как:

  • локализация и сдерживание пожара – сбросы спецжидкости по краю огня;
  • уничтожение небольших очагов возгорания;
  • транспортировка пожарных и их снаряжения в пункт назначения;

Что касается условий эксплуатации, то у обслуживания самолета амфибии семейства Бе 200 следующие требования:

  • акватория с длиной от 2300 м и глубиной от 2,5 м;
  • высота волны не должна превышать 1,2 м;
  • ВПП 1800 м класса Б;

Стояночная площадка для амфибии должна быть бетонированной и иметь размеры не менее 130 х 70 м, а также должен быть организован спуск к воде.

Конструктивные особенности

Конструктивно самолет амфибия модели Бе 200 – это моноплан, у которого крылья в форме стрелы расположены достаточно высоко. Оперение хвоста имеет форму буквы Т. Сам самолет имеет удлиненные размеры с разной поперечной килеватостью. Отличительной чертой Бе-200 можно назвать полностью загерметизированный фюзеляж, что дает возможность его использования при выполнении самого большого числа заданий.

В базовой модели самолета типа амфибия устанавливается два турбореактивных двигателя Д-436ТП, размещаемые над основанием крыла, чтобы защитить их от попадания воды при взлете или приводнении.

Самолет оснащается новейшим комплектом авионики АRIА-200М, которая дает возможность полетов при любых метеорологических условиях обоих полушарий. Оборудование АRIА-200М универсально и может быть переконфигурировано под определенные требования.

Технические характеристики Бе-200

К основным техническим параметрам модели относятся следующие показатели:

  • взлетная мощность двигателей – 2×7500 кгс;
  • крейсерская мощность двигателей – 2×1500 кгс;
  • вес самолета – 25,34 тн;
  • взлетный вес – 37,90 тн;
  • наибольшая вместимость баков – 12 тн;
  • потолок полета – 8000 м;
  • крейсерская скорость – 710 км/ч;
  • максимальная дальность полета – 3600 км;
  • протяженность разбега на воде – 1000 м;
  • протяженность разбега на суше – 700 м;
  • протяженность пробега на воде – 1300 м;
  • протяженность пробега на суше – 950 м;
  • мореходность – 1,2 м;
  • количество членов экипажа – 2 чел.

Универсальность Бе-200

Универсальность самолета модели Бе 200 заключалось в том, что ее достаточно быстро можно было переконфигурировать для выполнения других заданий с сохранением способности тушить пожары. Разработаны следующие сопутствующие варианты:

  • грузотранспортный;
  • пассажирский (Бе-210);
  • для поисково-спасательных операций;
  • санитарный.

В настоящее время ведется разработка модификации, предназначенной для административных целей.

Грузотранспортный вариант

У данной модификации имеется возможность транспортировки грузов в контейнерах, а также на поддонах (максимально – 6,5 тн), а также перевозки пассажиров в количестве 26 человек.

Важно! Максимальная дальность полета составит 1250 км.

Пассажирский Бе-210

При пассажирском варианте борт в состоянии принять 72 пассажира, при этом в состав экипажа вводятся 2 бортпроводника.

Важно! Максимальная дальность полета составит 1400 км.

Дополнительная информация. При компоновке салона шаг пассажирских кресел составит 0,75 м.

Поисково-спасательный

Такой вариант самолета амфибии линейки Бе 200 может летать без посадки в зоне поиска до 6,5 часов. В числе бортового оборудования:

  • надувная пвх-лодка;
  • комплект средств первой помощи;
  • средства поиска.

Важно! При проведении операции на борт можно принять до 4 человек.

Санитарный вариант

Этот вариант компоновки самолета амфибии предусматривает разворачивание госпиталя при транспортировке, оснащается необходимым медицинским оборудованием для проведения экстренного диагностирования и реанимации. В состав экипажа включается бригада медиков.

Дополнительная информация. Одновременно борт может принять до 40 человек пострадавших на носилках.

Модель Бе-200ЧС

Эта модель создана концерном по госзаказу МЧС и ГО России. Модель представляет собой универсальный самолет-амфибию, который будет использоваться для выполнения всех задач по предотвращению и ликвидации последствий ЧС. Пробный полет первого образца был совершен в 2003 г. Первые самолеты сошли с конвейера в 2008 г., сейчас концерн производит 8 бортов для МЧС России.

Технические характеристики модели:

  • размах крыла – 32,78 м;
  • длина самолета – 32,05 м;
  • высота – 8,9 м;
  • вес самолета – 28 тн;
  • максимально возможная крейсерская скорость – 700 км/ч;
  • мореходность – 3 балла;
  • максимальная высота волны – 1,2 м;
  • объем баков для воды – 12 м3;
  • размещение пострадавших – 50 чел.;
  • размещение пострадавших на носилках – 30 чел.;
  • максимальный вес груза – 7,5 тн.

Этот самолет-амфибия одновременно сочетает в себе все предыдущие варианты выпуска Бе-200 и в настоящий момент отвечает всем требованиям, предъявляемым МЧС РФ к своим специализированным бортам.

Видео

Введение

Человечество с незапамятных времен стремится подняться в небо. Об этом свидетельствует легенда, об Икаре, взлетевшему так высоко, что Солнце опалило его восковые крылья, и он упал на Землю. Однако ничто не могло остановить мечту человека о полетах в небе. Во многих народах мира существует сказка о ковре-самолете.

Людям было интересно узнать, а может ли подняться в воздух обычная лодка? Так возникла идея создания гидросамолета, которая появилась еще до разработок обычного самолета. Поэтому считаю эту тему актуальной и в наше время.

Цель работы:

Выяснить существуют ли сверхзвуковые гидросамолеты.

Для достижения цели в работе ставятся следующие задачи:

  • 1) Узнать, что такое гидросамолет;
  • 2) Ознакомится с основными схемами, проектами сверхзвуковых гидросамолетов, как в начале разработок, так и в наши дни.
  • 3) Собрать и обобщить имеющуюся информацию по данной теме.

Гидросамолёт

Гидросамолёт - самолёт, способный взлетать с воды и садиться на воду, а также маневрировать на воде. Конструкция и основные аэродинамические характеристики у гидросамолёта такие же, как и у сухопутных самолётов. Но, кроме того, он должен обладать плавучестью, непотопляемостью, остойчивостью на воде, т.е. качествами, характерными для судов. Гидросамолёты обычно имеют верхнее расположение крыла. Двигатели, как правило, устанавливают над крылом, чтобы их не заливало водой при взлёте и посадке. У большинства гидросамолётов фюзеляж своими обводами напоминает лодку. Такие самолёты и называются летающими лодками. Взлетая, они, как лодки, скользят по воде, пока не наберут необходимую для взлёта скорость. Чтобы летающая лодка на плаву не касалась крылом воды, устанавливают подкрыльные поддерживающие поплавки либо прикрепляют по бокам фюзеляжа обтекаемые герметичные баки, т. н. жабры. Другой распространённый тип гидросамолёта - поплавковый. Он практически ничем не отличается от сухопутных самолётов, только вместо колёсных шасси у него под фюзеляжем установлены поплавки.

Летающая лодка - оружие судного дня

6 июля 1961 г. День Авиации. Тушинский аэродром. Тысячи зрителей. Из мощных динамиков разносится: «Мы рождены, чтоб сказку сделать былью…» И вдруг над самыми трибунами со страшным грохотом проносится четверка огромных летающих лодок. Но людей поразили не столько их размеры, сколько наличие реактивных двигателей и стреловидных крыльев. Такого отродясь не видели не только московские обыватели, но и западные военные атташе!

Зачем русским реактивные летающие лодки, то есть лишние проблемы при взлете и посадке на воде? Да и для патрульной и противолодочной службы, а именно этим занимались летающие лодки во всем мире, околозвуковые скорости не только не нужны, а скорее противопоказаны. Военные обозреватели и адмиралы на Западе не могли понять очередного чудачества русских.

Но лишь несколько человек на правительственной трибуне в Тушине знали, что четверка летающих лодок Бе 10 - это осколки грандиозного плана Хрущева сокрушить Америку с помощью гидроавиации.

Уже в 1946 г. американские летающие крепости Б 29, действуя с промежуточных аэродромов на территории своих союзников в Европе, Турции, Иране и Японии, могли нанести ядерный удар по любому нашему городу, включая Москву. В 1949 г. в СССР произвели испытания ядерного оружия и создали улучшенный аналог Б 29 - бомбардировщик Ту 4. Советская летающая крепость могла уничтожить любой европейский город, но не доставала до США. Долгие годы североамериканский континент был недосягаем для советских сил ядерного возмездия. Напомню, что в ходе кубинского кризиса в декабре 1962 г. СССР располагал менее чем двадцатью межконтинентальными баллистическими ракетами (МБР) и несколькими бомбардировщиками Ту 95, способными поразить территорию США.

А в начале 1950 х годов МБР многим генералам и членам ЦК КПСС казались ненаучной фантастикой, и руководство СССР параллельно с ними готовило альтернативный проект оружия возмездия. Система оружия состояла из больших реактивных летающих лодок - носителей сверхзвуковых самолетов снарядов и подводных лодок танкеров, обеспечивавших дозаправку летающих лодок.

Сразу замечу, проект создания соединений гидросамолетов - носителей ядерного оружия - не бред, а довольно грамотная техническая идея. Начну с того, что обыкновенный стратегический бомбардировщик требует огромной взлетно посадочной полосы (ВПП) с твердым покрытием, на строительство которой уходит много недель, а то и месяцев. ВПП невозможно скрыть от противника даже в мирное время, а в военное время легко вывести из строя. Летающим лодкам не нужны дорогостоящие и легкоуязвимые ВПП, они могут взлетать и садиться теоретически в любой точке водной поверхности, занимающей 5/6 территории земного шара.

Представим себе картину: зима за Полярным кругом, безлюдный гористый берег, море, скованное льдом. И вдруг на полосе в несколько сот метров начинает таять лед. «Чудо» происходит за счет выделения горячего воздуха из специальных труб, проложенных вдоль водной ВПП. Воздух нагревает воду, а главное, обеспечивает циркуляцию теплой воды со дна на поверхность.130 С отвесной скалы на берегу осыпается снег, поднимается стальная плита, и из скального укрытия катер медленно выводит реактивную летающую лодку с двумя подвешенными под крыльями ракетами.

Лодка взлетает с искусственной полыньи и берет курс на юг. Где то в тропическом море, например, в архипелаге Антильских островов или в восточной части Тихого океана, летающая лодка проводит дозаправку топливом с подводной лодки танкера. Затем лодка взлетает и берет курс на США. Напомню, что в конце 1950 х - начале 1960 х годов янки еще не имели систему спутников разведчиков, фиксирующих каждый вылет самолета, а сплошная зона обнаружения РЛС была только на севере США и Канады (система ПВО «НОРАД»). С юга США до явления Фиделя Кастро никогда не ожидали нападения. А именно с юга к штатам приближается наша лодка.

В любом случае ей не придется входить в ближнюю зону ПВО крупных городов или военных объектов. С расстояния 110 км лодка могла запустить самолеты снаряды К 12БС и с 2500 км - самолеты снаряды Х 44. Выпустив обе ракеты, лодка ложится на обратный курс и следует на рандеву с подводным танкером. Но на сей раз ей предстоит не только заправка топливом. С подводной лодки с помощью специального надувного плота на самолет перегружается еще пара самолетов снарядов для нового налета. А пока «экипаж машины боевой» плещется в тропическом море, его место занимает сменный экипаж.

Понятно, что тут описан сценарий тотальной ядерной войны. А в случае локальной войны реактивные летающие лодки могли действовать в любом районе мирового океана - у берегов Индокитая или Фолклендских островов, в Карибском или Аравийском морях. А сами самолеты снаряды К 12БС и Х 44 могли поражать не только площадные наземные цели, но и с помощью радиолокационных головок самонаведения уничтожать как отдельные корабли (фугасно кумулятивной боевой части), так и целые соединения (специальной боевой частью).

Тут надо сразу оговориться: идея создания реактивной летающей лодки и даже летающей лодки - дальнего бомбардировщика носителя ядерного оружия не принадлежала СССР.

Первая в мире реактивная летающая лодка SRA 1 оторвалась от воды 16 июля 1947 г. Британская фирма «Саундерс РО» в интересах флота спроектировала морской истребитель - летающую лодку. Схема была взята с обычной для летающих лодок конструкцией корпуса.

Силовая установка самолета состояла из двух турбореактивных двигателей Метрополитен Виккерс «Верил» M.V.B.1 с тягой по 1480 кг, установленных в корпусе лодки. Общий для обоих двигателей воздухозаборник находился в носовой части корпуса, а выхлопные трубы выходили из корпуса позади крыла. На втором опытном образце самолета были установлены турбореактивные двигатели «Верил» M.V.B.2 с тягой по 1590 кг, а на третьем образце - двигатели «Верил» 1 с тягой по 1750 кг.

Самолет SRA 1 имел во внутренних баках около 1930 л горючего. Кроме того, под крылом самолета между корпусом и убирающимися стабилизирующими поплавками могли подвешиваться сбрасываемые топливные баки.

Взлетный вес самолета составлял 7400 кг, вес пустого самолета - 5100 кг. На третьем опытном образце самолета была достигнута максимальная скорость 825 км/час.

Однако в ходе испытаний выявились серьезные недостатки самолета SRA 1, и опыты с ним были прекращены. Да и вообще, идея создания реактивного истребителя оказалась порочной, и вскоре работы по ним прекратились. Последний опыт состоялся в 1953 г., когда фирма Конвер в США построила экспериментальный истребитель «Си Дарт» с убирающимися в полете гидролыжами, представлявшими собой нечто среднее между облегченными поплавками и обычными лыжами. В прорезях лыж были размещены колеса. Во время летных испытаний «Си Дарта» на пологом планировании была достигнута скорость, немного превышающая скорость звука. Однако вскоре оба опытных образца разбились.

Куда более заманчива западная идея создания летающей лодки - дальнего бомбардировщика. В 1952 г. американская фирма Мартин приступила к проектированию летающий лодки Р6М 1 «Си Мастер». По своей схеме этот самолет представлял собой летающую лодку с четырьмя твердотопливными двигателями «Алисой» J.71 с тягой по 5,9 т. Стреловидное крыло имело отрицательное поперечное V, что позволяло разместить подкрыльевые поплавки на самых концах крыла без подкосов.

Взлетный вес лодки составлял 72,6 т. Она могла нести боевую нагрузку до 13,6 т. Бомбы, торпеды и другое вооружение доставлялось на лодку «на плаву». Максимальная скорость лодки 965 км/час. Потолок 12,2 км. Дальность действия 4850 км (по другим данным 5700 км). Оборонительное вооружение «Си Мастера» состояло из шести дистанционно управляемых 12,7 мм пулеметов Браунинг. Самолет должен был садиться и взлетать при волне до 1,8 м.

Таким образом, эта летающая лодка по своим тактико-техническим характеристикам мало отличалась на тот момент от американского стратегического бомбардировщика В 47 «Стратоджет» (взлетный вес 84 т, максимальная скорость 960 км/ час, потолок 12,8 км, дальность 4800 км).

Первый опытный образец «Си Мастера» строился в большой спешке. Его сдали на испытания даже без катапультных сидений. Первый полет лодки состоялся 14 июля 1955 г., а второй полет - только 18 мая 1956 г. Сразу же после второго полета фирма Мартин получила заказ от ВМФ на постройку 24 серийных модифицированных лодок «Си Мастер», которые получили флотский индекс Р6М 2.

7 декабря 1955 г. в районе устья реки Потомак первый опытный образец «Си Мастер», налетав всего 37 часов, перешел в неуправляемое пикирование и разбился. Все четыре члена экипажа погибли. Вероятной причиной катастрофы посчитали отказ бустерного управления рулем высоты.

Второй опытный образец, уже оборудованный катапультными сиденьями, поступил на летные испытания 18 мая 1956 г. А 9 ноября того же года в районе Чесапикского залива он вошел в неуправляемое крутое кабрирование, свалился на крыло и потерпел аварию. Но члены экипажа смогли благополучно катапультироваться и приземлились в районе городе Одесса в штате Делавар. Причина была та же - отказ бустерного управления рулем высоты.

На третьем опытном экземпляре фирма Мартин уже устранила все выявленные дефекты. Летные испытания начались 20 января 1958 г.

Параллельно фирма Мартин начала шумную рекламную кампанию. На испытания Р6М 1 приглашались журналисты и кинооператоры документалисты. Разумеется, все это происходило в идеально подобранных условиях - наивыгоднейшем состоянии водной поверхности (при небольшой ветровой волне) и умеренном встречном ветре,

ВМФ США готовился к приему лодок бомбардировщиков Р6М 2. Специально для них было начато строительство большого гидроаэродрома Харвей Пойнт в штате Северная Каролина. Для обеспечения деятельности лодок в необорудованных местах была выведена из резерва и переоборудована плавучая база гидроавиации AV5 «Альбемарл» водоизмещением 13 475 т.

А фирма Мартин приступила к проектированию более тяжелого гидросамолета «Си Мистрис», который предполагалось использовать и как транспортную машину, и как бомбардировщик.

На «Си Мистрис» планировалось установить восемь твердотопливных двигателей и получить скорость, близкую к скорости звука. Гидросамолет должен был взлетать и садиться на волне до трех метров. При дозаправке в воздухе дальность полета «Си Мистриса» должна была достигать 20 тыс. км. Дозаправку предполагалось производить прямо в океане с подводных лодок и надводных кораблей. А в дальнейшем фирма Мартен планировала установить на «Си Мистрисе» атомную силовую установку. Стоимость же новой машины указывалась значительной меньшей, чем стоимость нового бомбардировщика В 58 «Хастлер».

Однако 21 августа 1959 г. грянул гром - руководство ВМФ разорвало контракт на постройку 24 серийных Р6М 2. К этому времени фирма Мартин успела построить лишь 3 серийных гидросамолета. Всего же на работы по теме «Си Мастер» было затрачено 441 млн долларов.131 В ноябре того же 1959 г. все построенные гидросамолеты «Си Мастер» пошли на лом.

Причину прекращения работ в США по созданию реактивных летающих лодок, выполняющих функции стратегических бомбардировщиков, многие западные военные обозреватели объясняли конструктивными недостатками машин «Си Мастер» и «Си Мистрис». Такого же мнения придерживались и у нас. Так, крупный специалист по летающим лодкам Анатолий Борисович Григорьев писал: «Главный конструктор [Бериев. - А. Ш. ] сделал определенные выводы. Первое, „Си Мастер“ создавался в соответствии с концепцией начала пятидесятых годов, согласно которой наличие реактивных двигателей с большими запасами тяги якобы позволяло пренебречь требованиями гидродинамики и строить не лодку, способную летать, а скоростной самолет, приспособленный для базирования на воде. „Си Мастер“ - это реактивный самолет с непропорционально узкой лодкой, слабо выраженным реданом и малоэффективными подкрыльными поплавками. В результате этого самолет при взлете и посадке с боковым ветром зарывался консолью крыла в воду. При нормальной полетной массе „Си Мастер“ при разбеге сильно раскачивался и „барсил“. Если взлет производился при волне, то в двигатели набиралась вода и они глохли.

И второй вывод сделал Бериев. Создатели „Си Мастера“, желая получить высокую скорость, частично пренебрегли требованиями гидродинамики. Не в ладах оказались они и с аэродинамикой. Аэродинамические формы самолета не соответствовали так называемому „правилу площадей“, принятому в США при проектировании самолетов с околозвуковой скоростью. Сущность этого правила заключается в том, что комбинация крыла с фюзеляжем имеет наименьшее сопротивление в случае, когда величины поперечных сечений самолета, перпендикулярных направлению полета, будут образовывать на диаграмме плавную кривую, без резких выступов или впадин.

Взять, к примеру, места стыковки крыльев с фюзеляжем - в этом месте фюзеляж должен быть „поджат“ на величину поперечного сечения крыла. В противном случае на диаграмме появится резкий выступ. И несоблюдение „правила площадей“ приведет к сильному возрастанию сопротивления при приближении к скорости звука, при этом резко изменится картина обтекания самолета воздушными струями.

Требования „правила площадей“ очень трудно увязать с наличием редана, подкрыльных поплавков и других непременных атрибутов гидросамолета».

Видимо, во многом Бериев был прав, но, на мой взгляд, дело решил совсем другой фактор. Летом 1959 г. была успешно проведена серия из 33 пусков баллистических ракет «Поларис», из них лишь два пуска оказались полностью неудачными. И теперь правительство США и командование ВМФ решили делать ставку на баллистические ракеты «Поларис», которые собирались установить на подводные лодки, крейсера и даже на специальные корабли ракетоносцы, замаскированные под торговые суда.133 А использование летающих лодок только для транспортировки войск и противолодочной обороны было признано нецелесообразным, и ВМФ довольствовался летающими лодками с поршневыми двигателями типа Мэрлин PSM 2 и др.

А что же делалось у нас? В мае 1947 г. ОКБ Г. М. Бериева начало в инициативном порядке разработку своей первой реактивной лодки - морского разведчика с двумя двигателями ВК 1. Лодка получила обозначение Р 1.

Работы над Р 1 шли медленно. Так, если рулежки и пробежки по Еоде начались в 1949 г., то первый полет состоялся лишь 30 мая 1952 г. Взлетный вес Р 1 был около 20 т, а экипаж состоял из 3 человек.

Гидросамолет Р 1 построили в одном экземпляре, и вопрос о его серийном производстве даже не поднимался.

Работы по созданию первой реактивной летающей лодки Бе 10 были заданы Постановлением Совмина № 2622-1105сс от 8 октября 1953 г. В Постановлении говорилось, что Бе 10 (изделие «М») предназначается для ведения разведки в открытом море, высотного торпедо и бомбометания по кораблям, постановки мин, нанесения бомбовых ударов по военно морским базам и береговых сооружениям. Замечу, что ведение разведки, постановки мин с не меньшим успехом могли производить и летающие лодки с поршневыми двигателями. А бомбометание по кораблям в море с горизонтального полета с большой высоты обычными бомбами вообще было не эффективно. Поэтому руководство думало о нанесении ударов по береговым целям не в последнюю очередь.

В октябре 1955 г. был закончен постройкой первый опытный образец Б 10. Его делали на авиационном заводе № 86 в Таганроге, на котором серийно выпускались летающие лодки Бе 6 с поршневыми двигателями.

К 13 ноября 1955 г. Бе 10 в специальном плавучем доке отбуксировали в Геленджик. Там на специальном стенде произвели стыковку агрегатов, после чего 20 декабря начались заводские испытания. Там и состоялся первый 20 минутный полет Бе 10. Всего в ходе заводских испытаний было произведено 76 вылетов первого опытного и первого серийного образца Бе 10.

С 20 октября 1956 г. по 20 июля 1959 г. проходили государственные испытания Бе 10. Общий налет опытного самолета к моменту окончания испытаний составлял 138 час 33 мин (109 полетов), а первого серийного самолета - 91 час 31 мин (65 полетов). В ходе испытаний дважды выходили из строя двигатели, что приводило к перерывам в полетах.

В акте по результатам государственных испытаний летающая лодка Бе 10 с определенными оговорками рекомендовалась к принятию на вооружение авиации ВМФ. Там же отмечалось, что летные данные не полностью соответствуют тактико техническим требованиям. Максимальная скорость Бе 10 на испытаниях составила 910 км/час вместо заданной 950-1000 км/час, а практический потолок - 12,5 км вместо заданных 14-15 км. Практическая дальность полета составила 2895 км вместо 3000 км. Основной причиной снижений летно технических характеристик стало несоответствие фактических характеристик двигателя АП 7ПБ заявленным.

Летом 1959 г. к переучиванию на Бе 10 приступила 2 я эскадрилья 977 го отдельного морского дальнеразведыватель ного авиаполка авиации Черноморского флота, который был вооружен летающими лодками Бе 6. Эскадрилья базировалась на гидроаэродроме на закрытом от штормов озере Донузлав в Крыму.

Серийные Бе 10 в различных вариантах загрузки могли нести: 3 авиационные реактивные торпеды РАТ 52; 3 индукционные гидродинамические мины ИГДМ или авиационные плавающие мины АПМ; 12 бомб ФАБ 250 или одну ФАБ 3000.

Гидросамолет Бе 10 был вооружен передней неподвижной установкой с двумя пушками АМ 23 с боекомплектом 300 патронов и кормовой пушечной установкой ДК 7Б с двумя АМ 23 с боекомплектом 600 патронов. Установка ДК 7Б имела горизонтальное наведение ±65° и вертикальное +60° (вверх) и 40° (вниз). Управление наведением дистанционное посредством сельсинной синхронно следящей передачи. Дистанционное электрическое управление кормовой установкой осуществляется от оптической прицельной станции ПС 53К и ли радиолокационной прицельной станции «Аргон 2», позволяющей вести огонь при любой видимости.

Однако идея создания межконтинентального ракетоносца, способного взлетать с воды, не оставляла наше руководство. И за неимением лучшего им решили сделать Бе 10. При этом межконтинентальную дальность решили обеспечить за счет дозаправок, а крылатую ракету пришлось делать заново.

Работы по крылатой противокорабельной ракете К 12 были начаты по Постановлению Совмина № 838-389 от 11 июля 1957 г. Первоначальное проектирование ракеты велось в ГСНИИ 642, однако Постановлением Совмина № 564-275 от 26 мая 1958 г. работы по К 12 были переданы в ОКБ 49 (г. Таганрог, главный конструктор Г. М. Бериев).

Бериев решил делать ракеты К 12 в комплексе с самолетом носителем Бе 10Н, созданном на базе двухмоторной реактивной летающей лодки Бе 10. У Бериева индекс ракеты К 12 был преобразован в К 12БС.

Ракета К 12БС предназначалась для поражения бронированных кораблей, крупных транспортов и радиолокационно контрастных наземных целей. В аппаратуре самонаведения системы К 12Б использован принцип активного самонаведения ракеты с подвески по выбранной с помощью РЛС «Шпиль» надводной или наземной цели. Аппаратура наведения ракеты включала в себя активную радиолокационную головку самонаведения «КН» и автопилот АП 72-12.

Ракета оснащалась серийным жидкостным реактивным двигателем С2.722В с турбонасосной подачей топлива. Двигатель был размещен в хвостовой части фюзеляжа и работал в двух режимах:

Тяга (на уровне моря), кг - 1213 - 554

Время работы двигателя, мин - 120 - 150

В баках ракеты помещено 545 кг окислителя марки АК 20К и 175 кг горючего марки ТГ 02. Максимальная скорость полета 2500 км/час. Высота полета ракеты 5-12 км. Дальность стрельбы - от 40 до 110 км. Длина ракеты 8,36 м. Крылья стреловидные с углом 65°, размах крыльев 2,25 м. Стартовый вес 4,3 т.

Вес боевой части составлял около 350 кг. Боевая часть могла быть как ядерной, так и фугасно кумулятивной. В последнем случае она содержала 216 кг взрывчатого вещества.

При пробитии борта корабля цели при угле встречи менее 45° взрывное устройство обеспечивало подрыв обычной боевой части внутри корабля, а при углах встречи, превышающих 45°, происходил мгновенный взрыв у борта.

Пуск ракеты производился с самолета Бе 10Н при скорости полета до 700 км/час с высоты 5-10 км.

Таким образом, в ОКБ 49 под руководством Бериева был создан уникальный комплекс, состоявший из первой в мире серийной реактивной летающей лодки, оснащенной двумя крылатыми ракетами. Ни до этого, ни после ничего подобного в мире не было создано.

Нормальный взлетный вес самолета носителя Бе ЮН составлял 48,5 т. Самолет мог нести одну или две ракеты. Практический потолок Бе 10Н составлял 11,6-11,8 км, а максимальная скорость с одним снарядом - 875 км/час Радиус действия Бе ЮН при подвеске одного снаряда без дозаправки самолета - 1250 км, а с одной дозаправкой в море с подводной лодки - 2060 км. Это позволяло атаковать цели, находившиеся в центральной части Атлантики и Тихого океана. РЛС «Шпиль К 12У» должна была обнаруживать корабль цель типа эсминец при волнении моря 4-5 баллов на расстоянии не менее 150 км.

Не буду утверждать, что «Россия - родина слонов». В 1942-1943 гг. японские летающие лодки, стартуя с базы Джалуит на Маршаловых островах, дозаправлялись в океане от подводных лодок и наносили удары по Пёрл Харбору. А в 1950-1952 гг. американцы перестроили подводную лодку «Гуавина» в танкер заправщик, и с нее неоднократно заправлялись летающие лодки типа «Марлин».

В СССР с целью отработки взаимодействия гидросамолетов и подводных лодок при дозаправке в ноябре декабре 1956 г., в июне июле 1957 г. и в августе 1957 г. были проведены учения на Черноморском, Северном и Тихоокеанском флотах. При этом роль реактивной летающей лодки исполнял гидросамолет Бе 6, а роль танкеров - подводная лодка проекта 613.

Судостроительная промышленность параллельно работала над несколькими проектами лодок танкеров. Самым простым вариантом было переоборудование серийной подводной лодки проекта 613 в проект 613В. В корме лодки размещалась топливная цистерна емкостью 15 т керосина. Передача топлива на Бе 10 рассматривалась в двух вариантах: с помощью перекачки насосом и с помощью выдавливания сжатым азотом из баллонов. Делались и специальные проекты подводных лодок. Так, в 1956 г. в ЦКБ 18 были начаты работы по дизель электрической подводной лодке - минному заградителю проекта 632, который должен был перевозить 160 т авиационного топлива в топливно балластных цистернах.

В 1957 г. было начато проектирование большой дизель электрической транспортной подводной лодки проекта 648, которая среди прочих грузов должна была перевозить 500 т авиационного топлива. С августа 1959 г. началось проектирование атомной транспортной подводной лодки проекта 664, которая среди прочих грузов должна была перевозить 1000 т авиационного топлива. В проекте 664 в разделе «Назначение лодки» было сказано: «…снабжение в море гидросамолетов топливом и другими видами обеспечения». Что понималось под «другими видами обеспечения», сказано не было, но лодка проекта 664 должна была транспортировать 20 крылатых ракет типа П 5, П 6 или П 7. Эти ракеты предназначались для передачи в море на подводные лодки ракетоносцы. Однако без особого труда ракеты П 5 можно было заменить на ракеты К 12БС, которые были несколько легче по весу и существенно меньше по габаритам. А при проектировании ракеты К 12БС предусматривалась подвеска ее под крылом Бе ЮН на воде со специального катера. При передаче же ракеты с подводной лодки на Бе ЮН можно было использовать надувной понтон. Таким образом, один или несколько ракетоносцев Бе ЮН могли получить базу где нибудь в центре Тихого океана. Там они дозаправлялись с атомной подводной лодки, наносили ракетный удар по цели, удаленной на 1200 км, и возвращались назад за топливом и ракетами. Кстати, на подводной лодке самолеты могли ждать и сменные экипажи.

Параллельно с Бериевым, но соверьченно независимо от него, в атмосфере беспрецедентной секретности в Москве на Филях в ОКБ 23 в ноябре 1955 г. было начато проектирование сверхзвуковой летающей лодки (гидросамолета) М 70. Взлетный вес его должен был составлять 240 т. Но взлетать он мог даже при солидном волнении до 4 баллов включительно, то есть при волне до 1,8 м. Максимальная скорость летающей лодки М 70 должна была достигать 2500 км/ч, то есть почти в 2 раза превышать скорость звука.

Дальность полета М 70 без дозаправки 7000-7500 км, а с двумя дозаправками - 23 000 24 000 км, то есть лодка могла долететь и вернуться из любой точки земного шара.

Летающую лодку М 70 предполагалось оснастить четырьмя турбореактивными двигателями М 16-17Ф или П10Б (ПК 10), которые развивали на взлете тягу 22 т и 26,5 т соответственно.

Гидросамолет М 70 представлял собой высокоплан нормальной схемы с тонким трапециевидным крылом малого удлинения, четырьмя двигателями на пилонах, два из которых размещены над крылом, а два других закреплены справа и слева от киля, и гидрошасси. Гидрошасси его состояло из подводного крыла, носовой гидролыжи, подкрыльных гидролыж и кормового демпфера. Подводное крыло сварное из титанового сплава, образовано верхней и нижней обшивкой, приваренной к нервюрам.

Основным вооружением гидросамолета М 70 были баллистические крылатые ракеты Х 44 конструкции ОКБ 23 Мясищева или П б конструкции ОКБ 52 Челомея. Были и иные варианты нагрузок, в частности, управляемые бомбы типа УБВ 3 или 4 морские мины в габаритах ФАВ 1500.

Работы по Х 44 были начаты в 1956 г. в ОКВ 23. Самолет снаряд Х 44был выполнен по нормальной самолетной аэродинамической схеме. Два двигателя РЗ 45Ф с тягой по 5650 кг позволяли развивать снаряду маршевую скорость, в 3 раза превышающую скорость звука. По мере расходования топлива высота полета увеличивалась с 19 до 21,5 км. Стартовый вес снаряда Х 44 - 11 т, боевая часть весом 2,7 т содержала термоядерный заряд «изделие 205К». В противокорабельном варианте самолет снаряд Х 44 оснащался радиолокационной головкой самонаведения, разработанной в ЦНИ 108.

Оборонительное вооружение гидросамолета М 70 предназначалось для отражения атак противника в задней полусфере и создания пассивных помех системам наведения наземных РЛС и управляемых ракет класса «земля воздух» и «воздух воздух». Оборонительное вооружение включало: кормовую башню с двумя 23 мм пушками типа 261 П системы Рихтера; радиолокационный прицел типа «Ксенон»; реактивные снаряды ТСР 45 с дипльными отражателями.

Параллельно со сверхзвуковым гидросамолетом М 70 Мя сищев занялся разработкой гидросамолета с атомной силовой установкой 60М. Работы велись в соответствии с распоряжением Минавиапрома от 16 апреля 1956 г. за № М 40/1982 и Постановлением Совмина от 15 августа 1956 г. за № 1119-582.

При разработке проекта 60М были использованы результаты исследований по гидросамолету М 70. Успешные испытания модели гидросамолета М 70 с лыжно крыльевым шасси в открытом водоеме послужили основанием для выбора именно этой схемы для проекта 60М. Применение классической реданной схемы было признано нецелесообразным из за увеличенного миделя и большого веса конструкции.

Применение атомной силовой установки накладывало на конструкцию, аэродинамическую компоновку и условия наземной эксплуатации серьезные требования. А именно: обеспечение работоспособности агрегатов и систем самолета и возможности его наземной эксплуатации при наличии мощного и длительного радиоактивного излучения от реакторов двигателей и от активированной конструкции всего самолета; получение максимального практического потолка и удовлетворительных взлетно посадочных характеристик самолета при практически постоянной его массе в течение всего полета; обеспечение надежной защиты экипажа от действий радиоактивного излучения.

Гидросамолет 60М представлял собой цельнометаллический среднеплан с прямым крылом малого удлинения с Т образным оперением, с четырьмя твердотопливными двигателями, расположенными в кормовой части самолета, и лыжно крыльевым шасси. Это шасси убиралось в положение заподлицо в днище.

Взлетный вес гидросамолета 60М составлял 224 т, из которых 80 т приходилось на силовую установку и 25 т - на боевую нагрузку. Максимальная скорость составляла 2200-2400 км/час, а посадочная - 320 км/час Дальность пробега по воде 1600-2000 м. Дальность полета 20-25 тыс. км, то есть самолет мог поразить любую точку земного шара, при этом огибая районы с сильной ПВО противника.

Защита экипажа гидросамолета от нейтронного и гамма излучений почти не отличалась от наземных реакторов. Вооружение атомного гидросамолета 60М было аналогично гидросамолету М 70.

Параллельно с проектированием стратегических гидросамолетов в СССР шло проектирование их береговых и плавучих баз. Предусматривалось базирование гидросамолетов М 70 и 60М в скальных укрытиях. Любопытно, что эти гидросамолеты могли базироваться не только в Крыму у незамерзающего Черного моря, но и на Севере и Балтике.

Для стратегических гидросамолетов были спроектированы и специальные самоходные эксплуатационные доки, где они могли не только базироваться, но и ремонтироваться. Так, док для гидросамолета М 70 имел длину 85 м, а для 60М - около 100 м. Водоизмещение нагруженного дока составляло 3500 т. К доку был положен катер буксировщик самолета водоизмещением 640 т.

Судостроительная промышленность готовилась к серийной постройке транспортных подводных лодок, которые должны были снабжать стратегические гидросамолеты топливом и ракетами.

Как уже говорилось, лодка проекта 664 должна была транспортировать 20 крылатых ракет. Кроме того, лодка могла принять на борт 1000 т авиационного керосина. Для сравнения, максимальная загрузка керосином Бе 10Н составляла 18,7 т, а М 70 - 130 т. Легко посчитать, на сколько заправок была рассчитана лодка, то есть, делая по одной заправке за полет, летающая лодка М 70 могла совершить 10-11 полетов, каждый раз производя пуск двух ракет, без возвращения в базу.

Разумеется, за все надо платить, и водоизмещение атомных подводных лодок проекта 664 достигло 10 150 т, то есть приблизилось к водоизмещению атомных ракетоносцев 1980 х годов.

Но созданию грандиозной системы из летающих лодок, сверхзвуковых крылатых ракет и подводных танкеров не суждено было сбыться. Успешные пуски МБР Р 7 конструкции Королева и лодочных баллистических ракет Р 11ФМ и Р 13 конструкции Макеева произвели потрясающее впечатление на Хрущева, и он приказал прекратить все работы по созданию стратегических летающих лодок.

Строительство атомных подводных лодок проекта 664 было начато на заводе № 402, но вскоре было заморожено. Таганрогский авиазавод № 86 с 1958 г. по 1961 г. сдал 27 серийных реактивных летающих лодок Бе 10. А сверхзвуковая летающая лодка М 70, равно как и ракеты К 12БС и Х 44, но дошли даже до стадии летных испытаний.

Изготовленные Бе 10 было решено использовать в качестве протизолодочных и патрульных самолетов, и их даже оснастили специальной ядерной глубинной бомбой «Скальп». Но в этой роли, как уже говорилось, они были неэффективны.

Превосходные летные качества Бе 10 были использованы Хрущевым для пропагандистских целей. Летающие лодки со стреловидным крылом неоднократно на бреющем полете пролетали на параде в Тушино, над Невой и в Севастополе. На Бе 10 было установлено 12 мировых рекордов для летающих лодок, в т. ч. скорость 912 км/ч и высота с грузом в 15 т - 11 997 м.

С 1964 г. построенные Бе 10 ржавели на берегу, а в 1968 г. были сняты с вооружения.

Сверхзвуковой, дальний, океанский

В марте 1956-го ОКБ Г.М.Бериева получило задание на проектирование двухдвигательной сверхзвуковой летающей лодки. По результатам рассмотрения проекта этого самолета министерства авиационной промышленности и обороны обязали представить в первом квартале 1957-го предложение о постройке и сроках предъявления разведчика-торпедоносца на госиспытания.

Задавались дальность полета 2500 - 3000 км, максимальная скорость 1500 - 1600 км/ч, практический потолок 17000-18000 м. Вооружение должно было состоять из одной кормовой установки с пушкой калибра 23 мм, с радиолокационным прицелом и двух реактивных авиационных торпед. Практически одновременно с ОКБ Бериева аналогичное задание получили ОКБ Туполева и Мясищева.

Материалы по этому проекту почти не сохранились. Однако ясно, что для достижения заданных летно-технических характеристик мощности двух двигателей явно не хватало. ОКБ Бериева предложило переработанный проект под четыре двигателя.

Согласно тактико-техническим требованиям, гидросамолет должен был проектироваться под двигатели НК-6 разработки Н.Кузнецова. Однако углубленная работа над проектом показала, что использование перспективных НК-10 позволит создать машину с более высокими летными характеристиками, поэтому в окончательном варианте конструкторы ОКБ Бериева остановились именно на этом двигателе.

Дальний морской бомбардировщик-разведчик предназначался: для ведения воздушной разведки в интересах подводных лодок, нанесения ударов по соединениям кораблей и конвоям противника, выдачи координат целей подводным лодкам, а также для ведения самостоятельных боевых действий на океанских коммуникациях противника.

Предусматривались длительное пребывание на плаву, взлет и посадка с самолетом-снарядом днем и ночью в сложных метеоусловиях, в открытом океане при волнении 3 - 4 балла, встречи с подводной лодкой в заданном квадрате после длительного полета на большом удалении от берега с последующей заправкой топливом. Машина должна была решать задачи в условиях сильного противодействия и применения противником всех средств ПВО при подходе к цели.

При двукратной дозаправке от подводной лодки дальность полета на сверхзвуковой скорости могла быть доведена до 20000 км. Сложность и новизна поставленной задачи заключалась в том, что опыт проектирования и строительства подобных самолетов в то время отсутствовал.

Требовалось решить ряд новых проблем, главным образом, по аэродинамической и гидродинамической компоновкам, прочности, применению новых взлетно-посадочных устройств, обеспечивающих приемлемые перегрузки и хорошие мореходные качества на высоких скоростях взлета и посадки.

Надо было также доказать техническую возможность создания тяжелого скоростного гидросамолета. Для успешного решения этих и других задач пришлось мобилизовать весь ранее накопленный опыт.

На основании результатов экспериментальных исследований различных моделей гидросамолетов (бесхвостка, летающее крыло и другие) в аэродинамических трубах ЦАГИ, провели анализ возможных летно-технических характеристик и тактического применения аппарата. В результате анализа различных вариантов приняли нормальную схему с тонким крылом и лодкой большого удлинения.

Помимо удовлетворения чисто "авиационных" факторов, изложенных в тактических требованиях, необходимо было обеспечить и заданную мореходность при неспокойном море.

В итоге сделали выводы о возможности создания тяжелого сверхзвукового гидросамолета.

Применение же такого аппарата в качестве морского бомбардировщика - носителя противокорабельных крылатых ракет оказалось нецелесообразным, так как по своим характеристикам он уступал сухопутным бомбардировщикам аналогичного назначения.

Но безусловный интерес представляло использование гидросамолета в качестве разведчика, а также для решения других заданий. Особенно военных прельщала возможность экстренного рассредоточения машин на морских и океанских просторах в случае ядерного удара противника с последующим выполнением поставленных боевых задач.

Интересной особенностью сверхзвукового дальнего морского бомбардировщика-разведчика являлась его гидродинамика. В процессе проектирования рассматривались различные компоновки: как реданной схемы, так и с лыжно-крыльевым шасси. В проекте принят последний вариант. Основанием для этого послужили результаты модельных и натурных испытаний, проведенных совместно с ЦАГИ.

Основным несущим элементом гидрошасси являлось подводное крыло. В полете оно убиралось заподлицо с днищем. Носовая гидролыжа служила для обеспечения угла атаки подводного крыла, для получения требуемой подъемной силы на критических скоростях движения гидросамолета при разбеге.

Нижнюю поверхность гидролыжи предполагалось выполнить по форме днища лодки, заподлицо с которым она становилась в убранном положении. Кормовая демпфирующая лыжа, которая являлась задней опорной точкой гидрошасси, воспринимала на себя 10% нагрузки. Подводное крыло размещалось позади центра тяжести самолета и на взлетно-посадочных режимах воспринимало основную часть внешней нагрузки.

При разработке гидросамолета, получившего обозначение СД МБР, большое внимание уделили удобству эксплуатации и техобслуживания. Лодка большого удлинения не имела редана. Большую часть ее объема занимало топливо, размещавшееся в баках-отсеках и протектированных баках. В ее носовой части располагалась гермокабина экипажа и оборудование.

В средней части имелся грузоотсек длиной 11 м для крылатой ракеты, имеющий донные створки и палубную крышку. В кормовой части находился бак-отсек для перекачки топлива в полете, необходимый для смещения центра тяжести назад при переходе от дозвуковой скорости к сверхзвуковой.

Вся лодка делилась на 14 водонепроницаемых отсеков, предназначенных для обеспечения требуемого запаса плавучести. Но чтобы не "возить воздух", в них разместили оборудование и топливо.

Крыло кессонного типа с топливными баками-отсеками имело стреловидность 60° по передней кромке средней части и 35° у консолей. На крыле располагались щелевые закрылки и элероны. Все детали каркаса и обшивки имели антикоррозийное защитное покрытие.

На законцовках крыла располагались поплавки боковой остойчивости. Хвостовое оперение состояло из стреловидных киля и управляемого стабилизатора.

Два двухконтурных двигателя НК-10 поставили в хвостовой части самолета в общей мотогондоле, а два других - в гондолах над крылом. Питание ТРДД топливом и маслом осуществлялось раздельно, предусмотрена системы противопожарная и нейтрального газа.

Горючее размещалось в четырнадцати баках в лодке и в восьми крыльевых. В трех лодочных протектированных баках предусматривалась защита 17т топлива от снарядов калибра 20мм и осколков весом до 25 г.

Воздушно-тепловая противообледенительная система устанавливалась в носках центроплана и киле, электротепловая - в носках консолей крыла, стабилизаторе и воздухозаборниках двигателей.

Пилотажно-навигационное оборудование обеспечивало боевое применение гидросамолета в сложных метеоусловиях на всех географических широтах, в любое время суток и включало в себя, помимо стандартного набора, системы курсовую и пилотажно-навигационную "Путь", звездно-солнечный ориентатор, центральную гидровертикаль, навигационный автомат, автопилот АП-33.

Из радиооборудования предусматривались станция дальней связи "Планета", командная УКВ-радиостанция "Дуб-5", самолетное переговорное устройство СПУ-6. Аппаратура "Баку-С" предназначалась для работы с радиогидроакустическими буями, а "Охотск" - для звукоподводной связи с подводными лодками при нахождении гидросамолета на плаву. Имелись система дальней навигации "Сфера-2", автоматический радиокомпас АРК-54Б, радиовысотомеры малых и больших высот и прочее, а также спецаппаратура в варианте разведчика-указателя.

Рабочие места экипажа (летчик, штурман и оператор) снабжены бронеспинками и бронезаголовниками. Для спасения членов экипажа при аварийном покидании самолета в воздухе предусматривались катапультные кресла. На самолете также имелась надувная спасательная лодка ЛАС-5М.

Готовилась закладка опытного самолета на стапели. Но стратегические взгляды заказчика к тому времени претерпели существенные изменения, и ОКБ Бериева переключилось на другую тематику.

Convair F2Y-1 - сверхзвуковой гидроплан

Сочетание "сверхзвуковой гидросамолёт" весьма необычно. Однако сверхзвуковой истребитель - гидросамолёт был создан в первой половине 50-х годов XX века американской фирмой Конвэр.

Только что закончилась II Мировая война, в которой во всём блеске проявили себя тяжёлые авианосцы. Но они имели два существенных недостатка: Огромные размеры, и как следствие большая стоимость постройки и эксплуатации, а так же уязвимость в бою. Особенно об этом стали говорить после появления ядерного оружия. Действительно, при потоплении или повреждении авианосца, выходила из строя вся его авиагруппа, а это - многие десятки (до сотни) самолётов. Наступление реактивной эры влекло за собой дальнейшее увеличение размеров потребных авианосцев, что в свою очередь вело к росту их стоимости. Чтобы разорвать этот порочный круг, появилась идея создать истребитель - гидросамолёт. Он мог базироваться на небольших кораблях, аналогичных десантным, имеющим камеру - док. Предполагалось, что самолёт будет запущен с верхней палубы с помощью катапульты, а после выполнения задания сядет на воду и самостоятельно зарулит в камеру - док.

Важным изобретением была авиационная гидролыжа. Эта идея возникла в головах сотрудников Стевенского Технологического института и NACA (Национальный консультативный комитет по аэронавтике, не путать с NASA, которое было создано на его базе позже - в 60-х годах). Исследования показали, что гидролыжи могут поднять самолёт из воды. При этом отпадёт нужда в редане, на котором самолёт скользит по воде во второй стадии разбега, а это защитит фюзеляж от ударов воды и, после уборки лыж, облагородит аэродинамику. Решающий эксперимент, проведённый на летающей лодке Грумман JRF-5 Гусь, показал практическую применимость гидролыж и возможность обеспечить необходимые устойчивость и управляемость во время взлёта - посадки.

В конце 40-х годов Конвэр предложила ряд необычных проектов гидросамолёта, один из которых имел так называемый "смешанный корпус". Концепция смешанного корпуса предполагала, что самолёт сидит глубоко в воде, его крылья касаются поверхности и участвуют в создании общей плавучести (поддерживающие поплавки отсутствуют). Подход в проектировании фирмы Конвэр предполагал создание совершенной гидродинамической модели, чтобы потом, на её основе, создать высокоэффективный самолёт.

  • 1 октября 1948 г, BuAer - Морское Бюро по Аэронавтике, - объявило конкурс на создание гидросамолёта - истребителя, который должен был иметь скорость М 0,95, мог взлетать с волны, высотой 1,5 м и выполнять перехват ночью. К ноябрю 1949 были выдвинуты эксплуатационные требования со стороны командования ВМФ. Они предусматривали создание истребителя - гидросамолёта, способного действовать с передовых баз в любых метеоусловиях. Выполнить эти требования предполагалось используя гидролыжи. Фирма Конвэр развернула обширные работы, включавшие многочисленные продувки в аэродинамических трубах, буксировки в Модельном бассейне Дэвида Тэйлора, а так же высокоскоростные исследования в Лаборатории Физики атмосферы. Фирма решила использовать задел по дельтовидному (в русской литературе -треугольному) крылу, образовавшийся при создании перехватчика YF-102, который обещал показать скорость М 1,5, на высоте 9100 м. Истребитель-гидросамолёт получил предварительное обозначение Y2-2.
  • 19 января 1951 с Convair заключили, контракт на два опытных образца. Эти два опытных образца получили обозначение XF2Y-1 и регистрационные номера BuAer 137634 и 137635. Силовая установка должна была состоять из двух ТРД Вестингауз J46-WE-2, которые разрешалось заменить на J34-WE-32, если последние не успевали к началу лётных испытаний. В августе 1951 г. самолёт получил обозначение XF2Y-1 (Х- значит экспериментальный, F - истребитель). А в феврале 1952 года был заключен контракт, предусматривающий поставку 12 серийных F2Y-1 Си Дарт (Морской Дротик), в 1954 г.ВМФ так было уверено в успехе машин,что заказали 12 серийных самолетов,еще до кончания испытаний,поэтому(насколько я понял) 14 октября 1953 второй экспериментальный XF2Y-1 (BuNo 137635) был уничтожен,толком и не поучаствовав в испытаниях.

В дальнейшем сроки поставки и количество заказанных машин неоднократно менялись, но в конце концов было построено 3 лётных машины и 2 макета для исследований и статиспытаний.

Впервые Си Дарт был спущен на воду 14 декабря 1952 г. Тогда на испытательной станции фирмы Конвэр в заливе Сан Диего начались водные испытания. Самолёт рулил по воде, постепенно увеличивая скорость. Однажды, 14 января 1953 г., во время скоростного пробега, самолёт случайно оторвался от воды, после пробега в 310 м. Но официально первый вылет был выполнен несколько позже. Причиной задержки было неприятное и потенциально опасное явление, которое американцы назвали "Обстрел лыж".

По докладам лётчиков оно начиналось на скоростях более 96 км/ч, и напоминало попадание в лыжи пулемётной очереди или езду на стиральной доске. Вибрации были столь сильными, что не возможно было считывать показания приборов, а однажды обломилась штанга ПВД в носу самолёта, что привело к отказу многих пилотажных приборов. Исследования показали, что причина кроется в неровностях водной поверхности, которые с силой ударялись о лыжи. Гребни волн значительно усиливали удары. Вибрация от воды сложным образом взаимодействовали с деформациями лыж и колебаниями амортизационных стоек. Иногда система лыжи - стойки - вода входили в резонанс. Для уменьшения "обстрела лыж", прямую заднюю кромку лыж заменили на заострённую и изменили характеристики амортизации. Изменялась также форма лыж в плане. "Обстрел" уменьшился, но никогда в дальнейшем не был прёодолён полностью.

Первый официальный полёт Си Дарт был сделан 9 апреля 1953 г. К этому времени тучи на программу Си Дарт начали надвигаться с другой стороны: сухопутный перехватчик Конвэр YF-102, с треугольным крылом, аналогичным крылу Си Дарт, после нескольких месяцев полётов никак не хотел преодолевать звуковой барьер. Эти же проблемы угрожали и XF2Y-1. Ситуация усугублялась не совсем оптимальной конструкцией воздухозаборников и хвостовой части в районе сопел двигателей. Кроме того, двигатели J46-WE-2, которые наконец установили на самолёт, не давали обещанной тяги. В результате, проектная скорость М 1,5 была снижена до неутешительных М 0,99, что было значительно меньше требуемых флотом М 1,25.

В качестве оправдания можно было сказать, что ни один самолёт в то время не мог летать быстрее М 0,9. Фирма Конвэр вела пионерские работы в области больших скоростей. Перехватчик YF-102A, после 4-х месяцев испытательных полётов, всё-таки преодолел звуковой барьер. Но перед этим он был переделан в соответствии с "правилом площадей". Это внушало надежды в отношении Си Дарт, но флотское начальство всё равно в перспективе видело не очень большую скорость Си Дарт и продолжающийся "обстрел лыж". (Позволю себе напомнить: "Правило площадей" состоит в том, что площади поперечных сечений самолёта, сделанные вдоль его продольной оси, должны изменяться плавно. Лучше всего, если график поперечных площадей представляет собой часть дуги окружности или часть элипса. Если говорить проще - в месте крепления крыла фюзеляж самолёта должен иметь сужение. Тогда, полное сопротивление, на трансзвуковых и сверхзвуковых скоростях, будет минимальным.)

В конце 1953 г, когда закончилась война в Корее и началось сокращение военных расходов: Си Дарт оказался первым кандидатом на сокращение. Заказ на серию был отменён, а всего были построены 3 лётных самолёта, один макет и машина для статических испытаний. Тем не менее, лётные испытания были продолжены. Самолёт XF2Y-1 получил улучшенные двигатели J46-WE-2B с форсажной камерой. Двигатель стал длиннее, удлинилась мотогондола и изменился хвостовой обтекатель фюзеляжа. Испытания были сосредоточены на уменьшении "обстрела лыж". Си Дарт No.1 летал в первоначальной конфигурации с парой лыж, до середины 1954 г.

XF2Y-1 Си Дарт No.2 начал испытания в начале 1954 г. Самолёт имел множество изменений, в том числе и существенных: фюзеляж стал длиннее, возросли размах и площадь крыла. Сопла двигателей были лучше приспособлены к хвостовому обтекателю фюзеляжа. Самолёт имел пару лыж, а вот колесики на них отсутствовали, поэтому для перемещения Си Дарт No.2 использовали перекатную тележку. Вскоре после начала полётов проявился флаттер крыла, который быстро вылечили. Си Дарт No.2 был единственным самолётом, в котором проявился флаттер. В то время как первый Си Дарт использовался для отработки лыж, номер 2 использовался для скоростных полётов. На нём отрабатывалась система управления с бустерами и изучалась устойчивость и управляемость на различных режимах полёта. Во время полёта 3 августа 1954 г. пилот Ричбург в пологом пикировании с высоты 10300 м превысил скорость М 1. Таким образом, XF2Y-1 Си Дарт стал первым, и до настоящего времени единственным гидросамолётом, летавшим на сверхзвуке.

Примерно в конце 1954 г., фирма Конвэр, окрылённая успехом "правила площадей", предложила спроектировать новый Си Дарт F2Y-2. У него должна быть одна лыжа,фюзеляж, сделанный по правилу площадей и силовая установка с единственным ТРД Пратт энд Уитни J75 или Райт J67. По расчётам, F2Y-2 должен был показать скорость М 2. Но флот не разделял оптимизма фирмы и отказывался рассматривать любые предложения истребителей - гидросамолётов, пока проблемы с "обстрелом лыж" не будут разрешены. Тем временем Си Дарт No. 2 продолжил испытания в открытом море к югу от г. Пойнт Лома. Испытания в открытом море потребовали привлечения разнообразных средств обеспечения: многочисленных катеров, десантного корабля - дока типа LSD Кэйт Маунт, а так же спасательного вертолёта и самолёта. Испытания в море показали малую пригодность гидролыж для действий в открытом море, особенно при волнении.

В конце 1954 г. Си Дарт No.1 был переделан и снабжён единственной лыжей. Она имела малую килеватость и крепилась под центропланом на четырёх амортизационных стойках. Монолыжа была достаточно широкой, чтобы на её задней кромке закрепить два колесика, которые с кормовым колесом позволяли выполнять буксировку самолёта. Всего были исследованы около 100 вариантов разных лыж. Но, как это часто бывает, решение одних проблем вызывает появление других. "Обстрел лыжи" на новом самолёте был значительно меньше (хотя и не исчез полностью), зато возникли опасные раскачивания самолёта по тангажу и ухудшилась устойчивость самолёта на курсе. Частичное решение этих проблем было достигнуто путём усовершенствования амортизационных стоек. Они стали с переменной жёсткостью. В зависимости от скорости удара меняется количество открытых отверстий, пропускающих масло в амортизационной стойке. Решение сложное, но перспективное, поэтому самолёт стали готовить к оценочным испытаниям с представителями флота.

Но прежде чем оценочные испытания начались, на программу обрушился следующий, удар. 4 ноября 1954 г. промышленность совместно с флотом подготовили демонстрацию представителям прессы и телевидения новых самолётов: штурмовика вертикального взлёта XFY "Пого" и транспортного гидросамолёта R3Y "Трэйдвинд". Си Дарт к показу не готовился. Но репортёры потребовали продемонстрировать им новейший истребитель - гидросамолёт. Ну что - ж, решили лететь... Перед вылетом инструктировали Чарльза Ричборга: Ты только взлети, пройди перед трибуной на высоте 300...400 м, а потом аккуратненько приводнись. Больше от тебя ничего не требуется. Всё примерно так и было, но во время прохода, на высоте 300 м Си Дарт был разогнан до скорости порядка 920 км/ч, и прямо перед трибуной он внезапно развалился в воздухе и в виде огненного шара рухнул в воду. Чарльз Ричборг ещё дышал, когда его выловил спасательный катер, но через несколько минут - умер.

Комиссия, расследовавшая катастрофу, установила, что трагедия никак не связана с особенностями Си Дарта как гидросамолёта. Дело было в несовершенстве тогдашних систем управления с гидравлическими приводами. В полёте возникли возрастающие колебания по тангажу, с которыми система управления не смогла справиться. Ситуацию ухудшали непроизвольные микроскопические движения руки пилота. Такие колебания встречались на нескольких скоростных самолётах в то время, так что это не было болезнью только Си Дарт. Просто Ричборгу не повезло, его Си Дарт развалился от больших аэродинамических нагрузок во время второго отклонения носа самолёта вниз. (Может и прав был наш известный конструктор А.Н. Туполев, который примерно в то время сказал: - Лучший бустер это тот, который не установлен на самолёте).

Все полёты на Си Дартах были немедленно приостановлены. Хотя испытания по отработке лыж возобновили сразу после обнародования предварительных выводов аварийной комиссии. Но скоростных полётов F2Y больше никогда не выполнял. Тем временем, 4 марта 1955 г. взлетел последний лётный экземпляр Си Дарт No.3. Он имел двойные лыжи, особенностью которых был способ крепления колесиков на заострённой задней кромке лыж. Колёса были поворотными, а ось поворота шла вдоль лыжи. После руления по земле колёса разворачивались на 90град. и своей плоскостью становились в одну плоскость с лыжей, тем самым делая всю поверхность лыж гладкой.

Главной задачей самолёта No.3 была отработка двойных лыж в условиях открытого моря. Результаты не очень обнадёживали. Для ускорения взлёта и сокращения времени "обстрела лыж" решили попробовать пороховые стартовые ускорители RAT0, с тягой 440 кгс и временем работы 13-15 с. По паре таких ускорителей были установлены под каждым крылом F2Y-1 номер 3. Взлёт прошёл успешно, но дальнейшего продолжения эта работа не получила. Испытания двойных лыж были закончены 28 апреля, и больше Си Дарт No.3 в воздух не поднимался.

Но Си Дарт No.1 с монолыжей продолжал полёты. При этом появилась ещё одна проблема - отложение соли на разных частях самолёта. Особенно опасно было отложение соли на лопатках компрессора. Соль появлялась не от брызг, а выделялась из солёного морского воздуха. При работе двигателя отложения могли оторваться и повредить другие лопатки. Для предотвращения этого соль решили смывать водой. На самолётах No.No. 1 и 3 был установлен бак с пресной водой, ёмкостью 76 л. При работе двигателя на малом газу, перед взлётом, на вход компрессора подавалась вода, которая смывала соль. Эта система работала весьма эффективно. Другая серия испытаний посвящалась определению мах вертикальной скорости при посадке. Её удалось довести до 5,8 м/с, при этом самолёт вёл себя удовлетворительно.

Интерес к истребителю-гидросамолёту у заказчика постепенно угасал. Морские испытания тем временем продолжались.

Типовой вылет производился примерно по такой схеме: На земле запускался двигатель, и на собственных колесиках, установленных на лыжах и нижнем киле, самолёт рулил к слипу. Колесики были оборудованы тормозами, управляемыми из кабины двумя рычагами на правом пульте, а не традиционными педалями. Лётчики считали такое решение неудачным, однако управление ни разу не было потеряно. При одновременном торможении колёс самолёт замедлялся, а при раздельном - поворачивался в ту или иную сторону. При наземном рулении лыжи были выпущены в первую позицию так, чтобы их плоскости были параллельны продольной плоскости самолёта.

После спуска самолёта в воду, колесики на лыжах поворачивались на 90град., чтобы не выступать за плоскость лыж. Руление по воде было не сложным, при этом использовался комбинированный руль - тормоз на конце фюзеляжа. При необходимости можно было резко развернуться, используя разную тягу двигателей. С другой стороны было замечено, что с одним работающим двигателем Си Дарт плохо держался на заданном курсе. В нормальных условиях, на малом газу, гидроистребитель плыл на скорости 2 - 3 узла (3,7...5,5 км/ч), при раскрытом руль-тормозе и полностью выпущенных лыжах скорость падала до 1...2 узлов (1,8 - 3,7 км/ч). Вырулив к точке взлёта, пилот должен был уравновесить ветер и морские течения. Перед началом разбега лыжи полностью выпускались с помощью кнопки в задней части левого пульта. Разбег выполнялся примерно параллельно фронту волны, с носом, отклонённым к ветру, настолько, насколько это было возможным. Во время испытаний Си Дарт взлетал с боковым ветром до 60град. от курса взлёта.

Сдачей газа самолёт ускорялся и выходил из воды на лыжи при скорости от 8 до 10 узлов (15 -18,5 км/ч). Для исключения ошибок пилота и выполнения правильного взлёта инженерами Конвэр была разработана автоматическая система управления лыжами при разбеге и пробеге. После выхода фюзеляжа из воды (15 - 18,5 км/ч) полный форсаж блокировался, а лыжи убирались в буксировочное положение. При этом уменьшалось их погружение в воду и уменьшалось гидродинамическое сопротивление. Самолёт начинал разгоняться быстрее. Блокировка форсажа при этом снималась, и на скорости примерно 50 узлов (93 км/ч) лыжи полностью выпускались ещё раз. Таким образом достигалось устойчивое глиссирование самолёта по воде, с минимальным "обстрелом лыж". На скорости 100 узлов (185 км/ч) угол атаки составлял 2град. - 5град., и на скорости 125 узлов (231 км/ч) достигал взлётного значения 17град. -19град., на котором и происходил отрыв. В диапазоне скоростей от 96 км/ч, до взлётных 231 км/ч и волнении моря до 0,6 м, самолёт испытывал "обстрел лыж" с резкими ударами и перегрузками до 5,5 д, с частотой 15 -17 Гц.

В воздухе самолёт вёл себя нормально, без каких либо особенностей, хотя система управления с гидроусилителями была ещё не достаточно отработана. Обзор из кабины с необычным, клиновидным остеклением был достаточен, хотя в серии его предлагалось увеличить. При некоторых положениях освещённость приборной доски признавалась недостаточной, что затрудняло считывание показаний приборов.

Тяга силовой установки, даже с двигателями J46-WE-2B с форсажной камерой, была недостаточной, поэтому приемистость и скороподъёмность самолёта сочли не блестящими для истребителя. Попутно выяснилась чувствительность J46-WE-2B к отложению соли в проточной части - качество не хорошее для "морского" ТРД. Защита воздухозаборника от попадания брызг была в целом решена, и в процессе эксплуатации, при выполнении соответствующих регламентов, двигатель должен был отработать полный ресурс.

Посадка гидроистребителя происходила в обратном порядке. Лыжи выпускались полностью (в положение 2) и самолёт планировал к воде. Касание происходило на скорости 120 узлов (222 км/ч). Самолёт скользил по воде и довольно быстро тормозился, постепенно погружаясь в воду. При достижении скорости менее 6 узлов (10 км/ч) лыжи переводились в буксировочное положение, и колесики разворачивались в рабочее положение. На них самолёт мог по слипу выбраться на берег с помощью собственных двигателей.

Последний раз Си Дарт поднялся в воздух 16 января 1956 г. Целью было определение максимальных мореходных качеств самолёта. Волнение на море было 5 баллов (высота волны до 3 м), с сильным ветром (37 км/ч), дующим примерно 45град. к фронту волны. Билли Лонг, пилот самолёта, при разбеге, чтобы быстрее избавиться от тряски и "обстрела лыжи", рано подорвал самолёт. В результате машина подскочила и снова плюхнулась на воду, после чего стала "козлить" или, как говорят в нашей гидроавиации - "делать барсы". Удары были очень жёсткими, перегрузки при этом достигали опасных 8,5 д. Единственной мыслью Лонга при этом было - не дать самолёту нырнуть в волну и по возможности взлететь. Наконец Си Дарт No.1 оторвался от воды. Набрав высоту и сделав круг над заливом, Билли пошёл на посадку. Она также не отличалась изяществом и сопровождалась рядом сильных ударов. При этом Лонг ударился головой об остекление и разбил до крови нос. Несмотря на это, ему удалось удержать самолёт от нырка под воду, и на пробеге Си Дарт довольно быстро остановился и благополучно возвратился в Сан Диего. Это был последний вылет Морского Дротика (Си Дарт). Окончательный удар по программе нанесло появление "суперавианосцев" (так их называли американцы из-за огромного, по тем временам, водоизмещения в 60000/ 75000 т) типа "Форрестол". Таким образом, Си Дарт проиграл соревнование тяжёлому авианосцу, который он, в случае успеха, собирался заменить. В январе 1956 г. Отдел военно-морских операций снял технические требования на истребитель-гидросамолёт, и программа была закрыта.

Проект тяжелого сверхзвукового гидросамолета ЛКВВИА

По заданию Главного штаба ВВС в Советском Союзе в 1957-1960 годах проводились комплексные исследования по перспективам развития тактико-технических свойств самолетов, гидросамолетов, крылатых ракет и систем "самолет-носитель - самолет-снаряд" в целях обоснования предложений по вооружению ВВС перспективными боевыми средствами большой дальности.

Работы вели ЛКВВИА им. А.Ф.Можайского, ВВИА им. Н.Е.Жуковского, КВВА, НИИ-15 ВВС, НИИ-88, СибНИА, ЦАГИ, НИИ-1, ОКБ-470, ОКБ-23 и другие организации. Преподавателями и слушателями Ленинградской краснознаменной военно-воздушной инженерной академии им. А.Ф. Можайского (ЛКВВИА) с начала 1950-х годов прорабатывались варианты сверхзвукового транспортного самолета, использование которого в качестве ударного самолета позволяло резко сократить время нахождения в зоне ПВО противника.

Проектные проработки самолета со взлетной массой 25000 кг, оснащенного двумя двигателями с тягой по 4000 кг и рассчитанного на полет при скоростях М=2,5-3 на высотах до 20000 м, показали, что для достижения дальности полета 10000-11000 км необходимо значительное увеличение взлетной массы самолета.

Проработка сверхзвукового самолета с дальностью полета 8000-9000 км показала трудность его реализации в концепции самолета на уровне имевшихся технологий с базированием на аэродромах, но имелась возможность создания гидросамолета с заданными характеристиками или сухопутного самолета с системой дозаправки в воздухе от дозвукового самолета-танкера.

Ударные средства большой дальности рассматривались применительно к задачам: уничтожение средств нападения большой дальности противника, срыв мобилизационных мероприятий, нарушение морских и океанских сообщений, разрушение основных отраслей экономики, вывод из строя военной промышленности, дезорганизация государственного и военного управления, постановка минных заграждений на

основных морских путях, борьба со средствами ПРО и ПВО.

В качестве возможных объектов удара рассматривались стартовые позиции МБР, авианосные ударные соединения и конвои, склады ядерных боеприпасов и ракет, промышленные предприятия, административно-политические центры, военно-морские базы, важнейшие порты и электростанции, крупные склады оружия (в том числе и химического), топлива, сырья и др.

В ЛКВВИА им. А.Ф. Можайского в конце 1950-х годов в рамках темы "Изыскание путей развития сверхзвуковых гидросамолетов большой дальности полета" под руководством А.С.Москалева и А.И.Смирнова (научный руководитель работ по теме) велось проектирование (предэскизная проработка) сверхзвуковых самолетов-бомбардировщиков и самолетов-носителей классов: дальний стратегический бомбардировщик (ДСБ),

гидросамолет (ГС), самолет-амфибия круглогодичного использования.

Под руководством А.С.Москалева велись работы по обоснованию наиболее рациональной конструктивно-компоновочной схемы. Улучшение аэродинамики перспективного самолета велось под руководством АП.Мельнико-ва. Оптимизация параметров силовых установок и обоснование конструктивной схемы двигателя (для старта и полета самолета и для старта крылатой ракеты с носителя при скорости М=3-4) проведены под руководством И.И.Кулагина и А.А. Куландина.

Рассматривались гидросамолеты со взлетной массой от 150 до 450 -500 тонн следующего назначения: носители самолетного баллистического снаряда (СБС) и крылатых ракет (КР), военно-транспортные самолеты большой дальности, океанские разведчики.

Для СБС принималась дальность полета 2500 км при пуске с самолета-носителя с высоты 20-30 км, для крылатых ракет дальность полета - прямая видимость.

Исследование перспектив развития дальних стратегических бомбардировщиков и сверхзвуковых самолетов первоначально велось в диапазоне летно-технических характеристик: взлетная масса - 150-500 тонн, боевая нагрузка -5-15 тонн, высота полета вблизи цели -20-35 км, скорость полета М=2-4 (до 5).

Рассматривались следующие компоновочные схемы бомбардировщиков и самолетов-носителей: обычная -"самолетная", "бесхвостка", "летающее крыло", "утка" - со стреловидным и серповидным крылом, или с крылом треугольной, прямоугольной, трапециевидной форм. Для силовой установки предполагалось использовать ТРД и ТРДФ, либо в случае использования смешанной силовой установки - ПВРД и ТРДФ.

В сводной таблице приведены расчетные харакеристики дальних гидросамолетов различных компоновочных схем и взлетной массы, полученные на первом этапе исследований.

При проведении дальнейших исследований самолеты были разделены надве группы. Первая группа- самолеты, которые можно создать на основе технологий конца 1950-х годов с применением алюминиевого сплава Д-23. Вторая группа - самолеты, создаваемые с применением титановых сплавов, выпуск опытных самолетов прогнозировался на 1965 год. Отмечалось, что применение в конструкции самолетов титана вместо сплава Д-23 позволит увеличить дальность и скорость полета.

На основании всестороннего анализа были введены ограничения на ТТХ: для сухопутных самолетов - взлетная масса до 300 т, посадочная скорость до 250 км/ч, скорость отрыва - 350 км/ч, длина разбега и пробега - до 1600 м; для гидросамолетов - взлетная масса до 300 т, посадочная скорость - до 280 км/ч, скорость отрыва - 380 км/ч, длина разбега и пробега до 2500 м.

Силовая установка для самолетов всех компоновочных схем - 8-10 ТРД, ТРДФ (при расчетных скоростях полета М=2-3,2), не исключалась возможность использования смешанных силовых установок с применением ПВРД (скорость полета более М=3,8). Рассматривались режимы полета на высотах до 30-35 км при скорости до М=4,4-4,6.